利用 DSGZ 模型模拟层状聚合物复合材料在平板冲击下的动态响应

Huadian Zhang, A. M. Rajendran, Manoj K. Shukla, S. Nouranian, Ahmed Al-Ostaz, Steven Larson, Shan Jiang
{"title":"利用 DSGZ 模型模拟层状聚合物复合材料在平板冲击下的动态响应","authors":"Huadian Zhang, A. M. Rajendran, Manoj K. Shukla, S. Nouranian, Ahmed Al-Ostaz, Steven Larson, Shan Jiang","doi":"10.3390/jcs8050159","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical study on the dynamic response and impact mitigation capabilities of layered ceramic–polymer–metal (CPM) composites under plate impact loading, focusing on the layer sequence effect. The layered structure, comprising a ceramic for hardness and thermal resistance, a polymer for energy absorption, and a metal for strength and ductility, is analyzed to evaluate its effectiveness in mitigating the impact loading. The simulations employed the VUMAT subroutine of DSGZ material models within Abaqus/Explicit to accurately represent the mechanical behavior of the polymeric materials in the composites. The VUMAT implementation incorporates the explicit time integration scheme and the implicit radial return mapping algorithm. A safe-version Newton–Raphson method is applied for numerically solving the differential equations of the J2 plastic flow theory. Analysis of the simulation results reveals that specific layer configurations significantly influence wave propagation, leading to variations in energy absorption and stress distribution within the material. Notably, certain layer sequences, such as P-C-M and C-P-M, exhibit enhanced impact mitigation with a superior ability to dissipate and redirect the impact energy. This phenomenon is tied to the interactions between the material properties of the ceramic, polymer, and metal, emphasizing the necessity of precise material characterization and enhanced understanding of the layer sequencing effect for optimizing composite designs for impact mitigation. The integration of empirical data with simulation methods provides a comprehensive framework for optimizing composite designs in high-impact scenarios. In the general fields of materials science and impact engineering, the current research offers some guidance for practical applications, underscoring the need for detailed simulations to capture the high-strain-rate dynamic responses of multilayered composites.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"34 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of the Dynamic Responses of Layered Polymer Composites under Plate Impact Using the DSGZ Model\",\"authors\":\"Huadian Zhang, A. M. Rajendran, Manoj K. Shukla, S. Nouranian, Ahmed Al-Ostaz, Steven Larson, Shan Jiang\",\"doi\":\"10.3390/jcs8050159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a numerical study on the dynamic response and impact mitigation capabilities of layered ceramic–polymer–metal (CPM) composites under plate impact loading, focusing on the layer sequence effect. The layered structure, comprising a ceramic for hardness and thermal resistance, a polymer for energy absorption, and a metal for strength and ductility, is analyzed to evaluate its effectiveness in mitigating the impact loading. The simulations employed the VUMAT subroutine of DSGZ material models within Abaqus/Explicit to accurately represent the mechanical behavior of the polymeric materials in the composites. The VUMAT implementation incorporates the explicit time integration scheme and the implicit radial return mapping algorithm. A safe-version Newton–Raphson method is applied for numerically solving the differential equations of the J2 plastic flow theory. Analysis of the simulation results reveals that specific layer configurations significantly influence wave propagation, leading to variations in energy absorption and stress distribution within the material. Notably, certain layer sequences, such as P-C-M and C-P-M, exhibit enhanced impact mitigation with a superior ability to dissipate and redirect the impact energy. This phenomenon is tied to the interactions between the material properties of the ceramic, polymer, and metal, emphasizing the necessity of precise material characterization and enhanced understanding of the layer sequencing effect for optimizing composite designs for impact mitigation. The integration of empirical data with simulation methods provides a comprehensive framework for optimizing composite designs in high-impact scenarios. In the general fields of materials science and impact engineering, the current research offers some guidance for practical applications, underscoring the need for detailed simulations to capture the high-strain-rate dynamic responses of multilayered composites.\",\"PeriodicalId\":502935,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"34 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8050159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8050159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对层序效应,介绍了分层陶瓷-聚合物-金属(CPM)复合材料在平板冲击荷载下的动态响应和冲击缓解能力的数值研究。分层结构包括用于提高硬度和热阻的陶瓷、用于吸收能量的聚合物以及用于提高强度和延展性的金属,研究分析了分层结构在减轻冲击载荷方面的有效性。模拟采用了 Abaqus/Explicit 中 DSGZ 材料模型的 VUMAT 子程序,以准确表示复合材料中聚合物材料的机械行为。VUMAT 实现了显式时间积分方案和隐式径向返回映射算法。在数值求解 J2 塑性流动理论的微分方程时,采用了安全版牛顿-拉夫逊方法。对模拟结果的分析表明,特定的层配置会显著影响波的传播,从而导致材料内部能量吸收和应力分布的变化。值得注意的是,某些层序(如 P-C-M 和 C-P-M)显示出更强的冲击缓解能力,具有更强的消散和重定向冲击能量的能力。这种现象与陶瓷、聚合物和金属的材料特性之间的相互作用有关,因此需要对材料进行精确表征,并加强对层序效应的理解,以优化复合材料的冲击缓解设计。经验数据与模拟方法的整合为优化高冲击情景下的复合材料设计提供了一个综合框架。在材料科学和冲击工程的一般领域,目前的研究为实际应用提供了一些指导,强调了进行详细模拟以捕捉多层复合材料的高应变速率动态响应的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of the Dynamic Responses of Layered Polymer Composites under Plate Impact Using the DSGZ Model
This paper presents a numerical study on the dynamic response and impact mitigation capabilities of layered ceramic–polymer–metal (CPM) composites under plate impact loading, focusing on the layer sequence effect. The layered structure, comprising a ceramic for hardness and thermal resistance, a polymer for energy absorption, and a metal for strength and ductility, is analyzed to evaluate its effectiveness in mitigating the impact loading. The simulations employed the VUMAT subroutine of DSGZ material models within Abaqus/Explicit to accurately represent the mechanical behavior of the polymeric materials in the composites. The VUMAT implementation incorporates the explicit time integration scheme and the implicit radial return mapping algorithm. A safe-version Newton–Raphson method is applied for numerically solving the differential equations of the J2 plastic flow theory. Analysis of the simulation results reveals that specific layer configurations significantly influence wave propagation, leading to variations in energy absorption and stress distribution within the material. Notably, certain layer sequences, such as P-C-M and C-P-M, exhibit enhanced impact mitigation with a superior ability to dissipate and redirect the impact energy. This phenomenon is tied to the interactions between the material properties of the ceramic, polymer, and metal, emphasizing the necessity of precise material characterization and enhanced understanding of the layer sequencing effect for optimizing composite designs for impact mitigation. The integration of empirical data with simulation methods provides a comprehensive framework for optimizing composite designs in high-impact scenarios. In the general fields of materials science and impact engineering, the current research offers some guidance for practical applications, underscoring the need for detailed simulations to capture the high-strain-rate dynamic responses of multilayered composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信