Alper Isleyen, Suleyman Z. Can, Oktay Cankur, Betul Ari Engin, Jochen Vogl, Maren Koenig, Milena Horvat, Radojko Jacimovic, Tea Zuliani, Vesna Fajon, Aida Jotanovic, Luka Gaževic, Milena Milosevic, Maria Ochsenkuehn–Petropoulou, Fotis Tsopelas, Theopisti Lymberopoulou, Lamprini-Areti Tsakanika, Olga Serifi, Klaus M. Ochsenkuehn, Ewa Bulska, Anna Tomiak, Eliza Kurek, Zehra Cakılbahçe, Gokhan Aktas, Hatice Altuntas, Elif Basaran, Barıs Kısacık, Zeynep Gumus
{"title":"通过联合研究项目认证 UME EnvCRM 03 土壤样本中的总元素质量分数","authors":"Alper Isleyen, Suleyman Z. Can, Oktay Cankur, Betul Ari Engin, Jochen Vogl, Maren Koenig, Milena Horvat, Radojko Jacimovic, Tea Zuliani, Vesna Fajon, Aida Jotanovic, Luka Gaževic, Milena Milosevic, Maria Ochsenkuehn–Petropoulou, Fotis Tsopelas, Theopisti Lymberopoulou, Lamprini-Areti Tsakanika, Olga Serifi, Klaus M. Ochsenkuehn, Ewa Bulska, Anna Tomiak, Eliza Kurek, Zehra Cakılbahçe, Gokhan Aktas, Hatice Altuntas, Elif Basaran, Barıs Kısacık, Zeynep Gumus","doi":"10.1007/s00769-024-01597-8","DOIUrl":null,"url":null,"abstract":"<div><p>Soil certified reference material (CRM), UME EnvCRM 03 was produced by a collaborative approach among national metrology institutes, designated institutes and university research laboratories within the scope of the EMPIR project: Matrix Reference Materials for Environmental Analysis. This paper presents the sampling and processing methodology, homogeneity, stability, characterization campaign, the assignment of property values and their associated uncertainties in compliance with ISO 17034:2016. The material processing methodology involves blending a natural soil sample with a contaminated soil sample obtained by spiking elemental solutions for 8 elements (Cd, Co, Cu, Hg, Ni, Pb, Sb and Zn) to reach the level of warning risk monitoring values specified for metals and metalloids of soils in Europe. Comparative homogeneity and stability test data were obtained by two different institutes, ensuring the reliability and back up of the data. The certified values and associated expanded uncertainties for the total mass fractions of thirteen elements (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V and Zn) are established. The developed CRM can be used for the development and validation of measurement procedures for the determination of the total mass fractions of elements in soil and also for quality control/assurance purposes. The developed CRM is the first example of a soil material originating from Türkiye.</p></div>","PeriodicalId":454,"journal":{"name":"Accreditation and Quality Assurance","volume":"29 4","pages":"293 - 301"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Certification of the total element mass fractions in UME EnvCRM 03 soil sample via a joint research project\",\"authors\":\"Alper Isleyen, Suleyman Z. Can, Oktay Cankur, Betul Ari Engin, Jochen Vogl, Maren Koenig, Milena Horvat, Radojko Jacimovic, Tea Zuliani, Vesna Fajon, Aida Jotanovic, Luka Gaževic, Milena Milosevic, Maria Ochsenkuehn–Petropoulou, Fotis Tsopelas, Theopisti Lymberopoulou, Lamprini-Areti Tsakanika, Olga Serifi, Klaus M. Ochsenkuehn, Ewa Bulska, Anna Tomiak, Eliza Kurek, Zehra Cakılbahçe, Gokhan Aktas, Hatice Altuntas, Elif Basaran, Barıs Kısacık, Zeynep Gumus\",\"doi\":\"10.1007/s00769-024-01597-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil certified reference material (CRM), UME EnvCRM 03 was produced by a collaborative approach among national metrology institutes, designated institutes and university research laboratories within the scope of the EMPIR project: Matrix Reference Materials for Environmental Analysis. This paper presents the sampling and processing methodology, homogeneity, stability, characterization campaign, the assignment of property values and their associated uncertainties in compliance with ISO 17034:2016. The material processing methodology involves blending a natural soil sample with a contaminated soil sample obtained by spiking elemental solutions for 8 elements (Cd, Co, Cu, Hg, Ni, Pb, Sb and Zn) to reach the level of warning risk monitoring values specified for metals and metalloids of soils in Europe. Comparative homogeneity and stability test data were obtained by two different institutes, ensuring the reliability and back up of the data. The certified values and associated expanded uncertainties for the total mass fractions of thirteen elements (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V and Zn) are established. The developed CRM can be used for the development and validation of measurement procedures for the determination of the total mass fractions of elements in soil and also for quality control/assurance purposes. The developed CRM is the first example of a soil material originating from Türkiye.</p></div>\",\"PeriodicalId\":454,\"journal\":{\"name\":\"Accreditation and Quality Assurance\",\"volume\":\"29 4\",\"pages\":\"293 - 301\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accreditation and Quality Assurance\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00769-024-01597-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accreditation and Quality Assurance","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00769-024-01597-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Certification of the total element mass fractions in UME EnvCRM 03 soil sample via a joint research project
Soil certified reference material (CRM), UME EnvCRM 03 was produced by a collaborative approach among national metrology institutes, designated institutes and university research laboratories within the scope of the EMPIR project: Matrix Reference Materials for Environmental Analysis. This paper presents the sampling and processing methodology, homogeneity, stability, characterization campaign, the assignment of property values and their associated uncertainties in compliance with ISO 17034:2016. The material processing methodology involves blending a natural soil sample with a contaminated soil sample obtained by spiking elemental solutions for 8 elements (Cd, Co, Cu, Hg, Ni, Pb, Sb and Zn) to reach the level of warning risk monitoring values specified for metals and metalloids of soils in Europe. Comparative homogeneity and stability test data were obtained by two different institutes, ensuring the reliability and back up of the data. The certified values and associated expanded uncertainties for the total mass fractions of thirteen elements (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, V and Zn) are established. The developed CRM can be used for the development and validation of measurement procedures for the determination of the total mass fractions of elements in soil and also for quality control/assurance purposes. The developed CRM is the first example of a soil material originating from Türkiye.
期刊介绍:
Accreditation and Quality Assurance has established itself as the leading information and discussion forum for all aspects relevant to quality, transparency and reliability of measurement results in chemical and biological sciences. The journal serves the information needs of researchers, practitioners and decision makers dealing with quality assurance and quality management, including the development and application of metrological principles and concepts such as traceability or measurement uncertainty in the following fields: environment, nutrition, consumer protection, geology, metallurgy, pharmacy, forensics, clinical chemistry and laboratory medicine, and microbiology.