{"title":"在支持 SDN 的物联网场景中检测恶意软件的混合方法","authors":"Cristian H. M. Souza, Carlos H. Arima","doi":"10.1002/itl2.534","DOIUrl":null,"url":null,"abstract":"Malware presents a significant threat to computer systems security, especially in ARM and MIPS architectures, driven by the rise of the internet of things (IoT). This paper introduces Heimdall, a hybrid approach that integrates YARA signatures and machine learning in programmable switches for efficient malware detection in SDN‐enabled IoT environments. The machine learning classifier achieved an accuracy of 99.33% against the IoT‐23 dataset. When evaluated in an emulated environment with real malware samples, Heimdall exhibits a 98.44% detection rate and an average processing time of 0.0217 s.","PeriodicalId":509592,"journal":{"name":"Internet Technology Letters","volume":"104 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid approach for malware detection in SDN‐enabled IoT scenarios\",\"authors\":\"Cristian H. M. Souza, Carlos H. Arima\",\"doi\":\"10.1002/itl2.534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware presents a significant threat to computer systems security, especially in ARM and MIPS architectures, driven by the rise of the internet of things (IoT). This paper introduces Heimdall, a hybrid approach that integrates YARA signatures and machine learning in programmable switches for efficient malware detection in SDN‐enabled IoT environments. The machine learning classifier achieved an accuracy of 99.33% against the IoT‐23 dataset. When evaluated in an emulated environment with real malware samples, Heimdall exhibits a 98.44% detection rate and an average processing time of 0.0217 s.\",\"PeriodicalId\":509592,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"104 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/itl2.534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/itl2.534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在物联网(IoT)兴起的推动下,恶意软件对计算机系统安全构成了重大威胁,尤其是在 ARM 和 MIPS 架构中。本文介绍了一种混合方法 Heimdall,它将 YARA 签名和机器学习集成到可编程交换机中,用于在支持 SDN 的物联网环境中高效检测恶意软件。机器学习分类器对 IoT-23 数据集的准确率达到 99.33%。在使用真实恶意软件样本的模拟环境中进行评估时,Heimdall 的检测率为 98.44%,平均处理时间为 0.0217 秒。
A hybrid approach for malware detection in SDN‐enabled IoT scenarios
Malware presents a significant threat to computer systems security, especially in ARM and MIPS architectures, driven by the rise of the internet of things (IoT). This paper introduces Heimdall, a hybrid approach that integrates YARA signatures and machine learning in programmable switches for efficient malware detection in SDN‐enabled IoT environments. The machine learning classifier achieved an accuracy of 99.33% against the IoT‐23 dataset. When evaluated in an emulated environment with real malware samples, Heimdall exhibits a 98.44% detection rate and an average processing time of 0.0217 s.