{"title":"作为电化学二氧化碳还原的电催化剂的镭基过渡金属氧化物包荧光体","authors":"Madhurima Barman, S. Kobi, Arindam Sarkar","doi":"10.1149/2754-2734/ad41ed","DOIUrl":null,"url":null,"abstract":"\n We report here the feasibility of using LaTMO3-based perovskites (TM = Co, Cr, Fe, Mn, Ni, i.e., non-Cu 3d transition metals) as electrocatalysts for electrochemical CO2 reduction reaction (eCO2RR). Phase pure LaTMO3s, having TM-ions in multiple oxidation states for all and O-defects for LaFeO3 and LaNiO3, have been synthesized and tested as electrocatalysts for eCO2RR in fuel cell type set-up. The above characteristics of the La-TM-oxides have been found to influence the current densities during eCO2RR at the various applied potentials, with favorable effects of the presence of O-defects (as for LaFeO3 and LaNiO3). Upon eCO2RR, both C1 and C2 liquid products have been obtained, including ethanol, with a partial current density of -2.66 mA/cm2 at -1.2 V vs. RHE (for LaFeO3). The types of products and the faradic efficiencies have been found to depend on the TM-ion present (in the LaTMO3); in particular, the oxidation state(s), associated O-defect(s) and electronic conductivity. Furthermore, the electrocatalysts have been found to be stable during eCO2RR. Overall, the present work highlights the potential of La-TM-oxide perovskites for usage as stable electrocatalysts for eCO2RR, and also provides insights into the proper selection of ‘TM’ and reaction conditions for obtaining the desired product(s).","PeriodicalId":489350,"journal":{"name":"ECS advances","volume":"57 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"La-based Transition Metal Oxide Perovskites as Electrocatalysts for Electrochemical Carbon Dioxide Reduction\",\"authors\":\"Madhurima Barman, S. Kobi, Arindam Sarkar\",\"doi\":\"10.1149/2754-2734/ad41ed\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We report here the feasibility of using LaTMO3-based perovskites (TM = Co, Cr, Fe, Mn, Ni, i.e., non-Cu 3d transition metals) as electrocatalysts for electrochemical CO2 reduction reaction (eCO2RR). Phase pure LaTMO3s, having TM-ions in multiple oxidation states for all and O-defects for LaFeO3 and LaNiO3, have been synthesized and tested as electrocatalysts for eCO2RR in fuel cell type set-up. The above characteristics of the La-TM-oxides have been found to influence the current densities during eCO2RR at the various applied potentials, with favorable effects of the presence of O-defects (as for LaFeO3 and LaNiO3). Upon eCO2RR, both C1 and C2 liquid products have been obtained, including ethanol, with a partial current density of -2.66 mA/cm2 at -1.2 V vs. RHE (for LaFeO3). The types of products and the faradic efficiencies have been found to depend on the TM-ion present (in the LaTMO3); in particular, the oxidation state(s), associated O-defect(s) and electronic conductivity. Furthermore, the electrocatalysts have been found to be stable during eCO2RR. Overall, the present work highlights the potential of La-TM-oxide perovskites for usage as stable electrocatalysts for eCO2RR, and also provides insights into the proper selection of ‘TM’ and reaction conditions for obtaining the desired product(s).\",\"PeriodicalId\":489350,\"journal\":{\"name\":\"ECS advances\",\"volume\":\"57 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS advances\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1149/2754-2734/ad41ed\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS advances","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1149/2754-2734/ad41ed","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
La-based Transition Metal Oxide Perovskites as Electrocatalysts for Electrochemical Carbon Dioxide Reduction
We report here the feasibility of using LaTMO3-based perovskites (TM = Co, Cr, Fe, Mn, Ni, i.e., non-Cu 3d transition metals) as electrocatalysts for electrochemical CO2 reduction reaction (eCO2RR). Phase pure LaTMO3s, having TM-ions in multiple oxidation states for all and O-defects for LaFeO3 and LaNiO3, have been synthesized and tested as electrocatalysts for eCO2RR in fuel cell type set-up. The above characteristics of the La-TM-oxides have been found to influence the current densities during eCO2RR at the various applied potentials, with favorable effects of the presence of O-defects (as for LaFeO3 and LaNiO3). Upon eCO2RR, both C1 and C2 liquid products have been obtained, including ethanol, with a partial current density of -2.66 mA/cm2 at -1.2 V vs. RHE (for LaFeO3). The types of products and the faradic efficiencies have been found to depend on the TM-ion present (in the LaTMO3); in particular, the oxidation state(s), associated O-defect(s) and electronic conductivity. Furthermore, the electrocatalysts have been found to be stable during eCO2RR. Overall, the present work highlights the potential of La-TM-oxide perovskites for usage as stable electrocatalysts for eCO2RR, and also provides insights into the proper selection of ‘TM’ and reaction conditions for obtaining the desired product(s).