巴齐列维奇函数类的对数系数边界

IF 1.4 3区 数学 Q1 MATHEMATICS
Navneet Lal Sharma, Teodor Bulboacă
{"title":"巴齐列维奇函数类的对数系数边界","authors":"Navneet Lal Sharma,&nbsp;Teodor Bulboacă","doi":"10.1007/s13324-024-00909-y","DOIUrl":null,"url":null,"abstract":"<div><p>If <span>\\({\\mathcal {S}}\\)</span> denotes the class of all univalent functions in the open unit disk <span>\\({\\mathbb {D}}:=\\left\\{ z\\in {\\mathbb {C}}:|z|&lt;1\\right\\} \\)</span> with the form <span>\\(f(z)=z+\\sum \\nolimits _{n=2}^{\\infty }a_{n}z^n\\)</span>, then the logarithmic coefficients <span>\\(\\gamma _{n}\\)</span> of <span>\\(f\\in {\\mathcal {S}}\\)</span> are defined by </p><div><div><span>$$\\begin{aligned} \\log \\frac{f(z)}{z}=2\\sum _{n=1}^{\\infty }\\gamma _{n}(f)z^n,\\;z\\in {\\mathbb {D}}. \\end{aligned}$$</span></div></div><p>The logarithmic coefficients were brought to the forefront by I.M. Milin in the 1960’s as a method of calculating the coefficients <span>\\(a_{n}\\)</span> for <span>\\(f\\in {\\mathcal {S}}\\)</span>. He concerned himself with logarithmic coefficients and their role in the theory of univalent functions, while in 1965 Bazilevič also pointed out that the logarithmic coefficients are crucial in problems concerning the coefficients of univalent functions. In this paper we estimate the bounds for the logarithmic coefficients <span>\\(|\\gamma _{n}(f)|\\)</span> when <i>f</i> belongs to the class <span>\\({\\mathcal {B}}(\\alpha ,\\beta )\\)</span> of Bazilevič function of type <span>\\((\\alpha ,\\beta )\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic coefficient bounds for the class of Bazilevič functions\",\"authors\":\"Navneet Lal Sharma,&nbsp;Teodor Bulboacă\",\"doi\":\"10.1007/s13324-024-00909-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>If <span>\\\\({\\\\mathcal {S}}\\\\)</span> denotes the class of all univalent functions in the open unit disk <span>\\\\({\\\\mathbb {D}}:=\\\\left\\\\{ z\\\\in {\\\\mathbb {C}}:|z|&lt;1\\\\right\\\\} \\\\)</span> with the form <span>\\\\(f(z)=z+\\\\sum \\\\nolimits _{n=2}^{\\\\infty }a_{n}z^n\\\\)</span>, then the logarithmic coefficients <span>\\\\(\\\\gamma _{n}\\\\)</span> of <span>\\\\(f\\\\in {\\\\mathcal {S}}\\\\)</span> are defined by </p><div><div><span>$$\\\\begin{aligned} \\\\log \\\\frac{f(z)}{z}=2\\\\sum _{n=1}^{\\\\infty }\\\\gamma _{n}(f)z^n,\\\\;z\\\\in {\\\\mathbb {D}}. \\\\end{aligned}$$</span></div></div><p>The logarithmic coefficients were brought to the forefront by I.M. Milin in the 1960’s as a method of calculating the coefficients <span>\\\\(a_{n}\\\\)</span> for <span>\\\\(f\\\\in {\\\\mathcal {S}}\\\\)</span>. He concerned himself with logarithmic coefficients and their role in the theory of univalent functions, while in 1965 Bazilevič also pointed out that the logarithmic coefficients are crucial in problems concerning the coefficients of univalent functions. In this paper we estimate the bounds for the logarithmic coefficients <span>\\\\(|\\\\gamma _{n}(f)|\\\\)</span> when <i>f</i> belongs to the class <span>\\\\({\\\\mathcal {B}}(\\\\alpha ,\\\\beta )\\\\)</span> of Bazilevič function of type <span>\\\\((\\\\alpha ,\\\\beta )\\\\)</span>.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00909-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00909-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果 \({\mathcal {S}}\) 表示开放单位盘中所有单值函数的类\({\mathbb {D}}:=\left\{ zin {\mathbb {C}}:|f(z)=z+sum nolimits _{n=2}^{infty }a_{n}z^n\) 的对数系数定义为 $$\begin{aligned}\log \frac{f(z)}{z}=2\sum _{n=1}^{infty }\gamma _{n}(f)z^n,\;z\in {\mathbb {D}}.end{aligned}$$ I.M. Milin 在 20 世纪 60 年代将对数系数作为计算 \(a_{n}\) for \(f\in {\mathcal {S}}) 的系数 \(a_{n}\) 的方法推向前沿。他关注的是对数系数及其在单值函数理论中的作用,而 1965 年,巴齐列维奇也指出对数系数在有关单值函数系数的问题中至关重要。在本文中,当 f 属于 Bazilevič 函数类型 \((\alpha ,\beta )\) 的 \({\mathcal {B}}(\alpha ,\beta )\) 类时,我们估计了对数系数 \(|\gamma _{n}(f)|\) 的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic coefficient bounds for the class of Bazilevič functions

If \({\mathcal {S}}\) denotes the class of all univalent functions in the open unit disk \({\mathbb {D}}:=\left\{ z\in {\mathbb {C}}:|z|<1\right\} \) with the form \(f(z)=z+\sum \nolimits _{n=2}^{\infty }a_{n}z^n\), then the logarithmic coefficients \(\gamma _{n}\) of \(f\in {\mathcal {S}}\) are defined by

$$\begin{aligned} \log \frac{f(z)}{z}=2\sum _{n=1}^{\infty }\gamma _{n}(f)z^n,\;z\in {\mathbb {D}}. \end{aligned}$$

The logarithmic coefficients were brought to the forefront by I.M. Milin in the 1960’s as a method of calculating the coefficients \(a_{n}\) for \(f\in {\mathcal {S}}\). He concerned himself with logarithmic coefficients and their role in the theory of univalent functions, while in 1965 Bazilevič also pointed out that the logarithmic coefficients are crucial in problems concerning the coefficients of univalent functions. In this paper we estimate the bounds for the logarithmic coefficients \(|\gamma _{n}(f)|\) when f belongs to the class \({\mathcal {B}}(\alpha ,\beta )\) of Bazilevič function of type \((\alpha ,\beta )\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信