Zhenyu Qian, Yuanshuai Dong, Yun-Xuan Hou, Hong Zhang, Shuangwen Fan, Hang Zhong
{"title":"基于同构的欠驱动无人飞行器视觉伺服控制几何方法","authors":"Zhenyu Qian, Yuanshuai Dong, Yun-Xuan Hou, Hong Zhang, Shuangwen Fan, Hang Zhong","doi":"10.1177/00202940241238918","DOIUrl":null,"url":null,"abstract":"This paper proposes a new geometric control method for homography-based visual servo control of Underactuated UAVs. In order to solve the application difficulties of geometric control in HBVS and explore a visual servo control technology that can be applied to aerial detection operations, this paper integrates the geometric control into the visual servoing framework and design a new homography-based geometric visual servoing controller. The outer loop is used as feedback information using the virtual homography matrix between the two images. The inner loop controls the orientation of the UAVs through geometric control. The stability of the proposed controller is proved based on Lyapunov’s theory. The proposed method has better transient performance and dynamic performance than the conventional visual servo method. The excellent performance of the controller has been proven by a large number of experiments. In addition, the application of the controller on an unmanned aerial manipulator is demonstrated.","PeriodicalId":510299,"journal":{"name":"Measurement and Control","volume":"17 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geometric approach for homography-based visual servo control of underactuated UAVs\",\"authors\":\"Zhenyu Qian, Yuanshuai Dong, Yun-Xuan Hou, Hong Zhang, Shuangwen Fan, Hang Zhong\",\"doi\":\"10.1177/00202940241238918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new geometric control method for homography-based visual servo control of Underactuated UAVs. In order to solve the application difficulties of geometric control in HBVS and explore a visual servo control technology that can be applied to aerial detection operations, this paper integrates the geometric control into the visual servoing framework and design a new homography-based geometric visual servoing controller. The outer loop is used as feedback information using the virtual homography matrix between the two images. The inner loop controls the orientation of the UAVs through geometric control. The stability of the proposed controller is proved based on Lyapunov’s theory. The proposed method has better transient performance and dynamic performance than the conventional visual servo method. The excellent performance of the controller has been proven by a large number of experiments. In addition, the application of the controller on an unmanned aerial manipulator is demonstrated.\",\"PeriodicalId\":510299,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940241238918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940241238918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A geometric approach for homography-based visual servo control of underactuated UAVs
This paper proposes a new geometric control method for homography-based visual servo control of Underactuated UAVs. In order to solve the application difficulties of geometric control in HBVS and explore a visual servo control technology that can be applied to aerial detection operations, this paper integrates the geometric control into the visual servoing framework and design a new homography-based geometric visual servoing controller. The outer loop is used as feedback information using the virtual homography matrix between the two images. The inner loop controls the orientation of the UAVs through geometric control. The stability of the proposed controller is proved based on Lyapunov’s theory. The proposed method has better transient performance and dynamic performance than the conventional visual servo method. The excellent performance of the controller has been proven by a large number of experiments. In addition, the application of the controller on an unmanned aerial manipulator is demonstrated.