{"title":"不同曲率角无界柔性管道侵蚀磨损的计算分析","authors":"Latchupatula Ananya, Vivek Kumar Patel","doi":"10.1177/09544089241248129","DOIUrl":null,"url":null,"abstract":"For industries using multi-phase transportation pipelines, erosion has been identified as one of the main challenges. Thus, extensive experimental and computational studies on slurry erosion wear have been conducted already for smooth pipes, particularly bends and junctions which were more susceptible to erosion wear because of the flow of multi-phase, but findings of erosive wear rate on the unbounded flexible pipe are not yet established. The purpose of the current study is to examine the effects of slurry wear on the unbounded flexible pipe material using CFD analysis when multi-phase fluid is flowing in the UFP at different curvature angles (30°, 50°, 70°, 90°). Flow speed (2 ms−1, 4 ms−1, 6 ms−1, 8 ms−1, 10 ms−1) and concentration (5%, 10%, 15%) were the key variables taken into account, and is discovered that these characteristics had a substantial effect on the flexible pipe. Further, to analyze how particle collision tendency affects the erosion wear rate of UPF when compared to smooth pipe, the streamlines for the UFP and smooth pipe are extracted.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"37 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational analysis of erosion wear on unbounded flexible pipe of different curvature angles\",\"authors\":\"Latchupatula Ananya, Vivek Kumar Patel\",\"doi\":\"10.1177/09544089241248129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For industries using multi-phase transportation pipelines, erosion has been identified as one of the main challenges. Thus, extensive experimental and computational studies on slurry erosion wear have been conducted already for smooth pipes, particularly bends and junctions which were more susceptible to erosion wear because of the flow of multi-phase, but findings of erosive wear rate on the unbounded flexible pipe are not yet established. The purpose of the current study is to examine the effects of slurry wear on the unbounded flexible pipe material using CFD analysis when multi-phase fluid is flowing in the UFP at different curvature angles (30°, 50°, 70°, 90°). Flow speed (2 ms−1, 4 ms−1, 6 ms−1, 8 ms−1, 10 ms−1) and concentration (5%, 10%, 15%) were the key variables taken into account, and is discovered that these characteristics had a substantial effect on the flexible pipe. Further, to analyze how particle collision tendency affects the erosion wear rate of UPF when compared to smooth pipe, the streamlines for the UFP and smooth pipe are extracted.\",\"PeriodicalId\":506108,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"volume\":\"37 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544089241248129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241248129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational analysis of erosion wear on unbounded flexible pipe of different curvature angles
For industries using multi-phase transportation pipelines, erosion has been identified as one of the main challenges. Thus, extensive experimental and computational studies on slurry erosion wear have been conducted already for smooth pipes, particularly bends and junctions which were more susceptible to erosion wear because of the flow of multi-phase, but findings of erosive wear rate on the unbounded flexible pipe are not yet established. The purpose of the current study is to examine the effects of slurry wear on the unbounded flexible pipe material using CFD analysis when multi-phase fluid is flowing in the UFP at different curvature angles (30°, 50°, 70°, 90°). Flow speed (2 ms−1, 4 ms−1, 6 ms−1, 8 ms−1, 10 ms−1) and concentration (5%, 10%, 15%) were the key variables taken into account, and is discovered that these characteristics had a substantial effect on the flexible pipe. Further, to analyze how particle collision tendency affects the erosion wear rate of UPF when compared to smooth pipe, the streamlines for the UFP and smooth pipe are extracted.