{"title":"可生物降解的热致变色聚乳酸(PLA)传感器","authors":"Q. Chan, Dai Lam Tran, K.I. Ku Marsilla","doi":"10.1515/pac-2024-0023","DOIUrl":null,"url":null,"abstract":"\n This study investigates the development of polylactic acid (PLA) by incorporating thermochromic black pigments (TCB) at varying concentrations of 0, 0.5, 1, 2 and 3 wt% through the process of melt blending. The color transition and reversion behaviors of the resulting specimens were examined at different temperatures (−10, 10, 30, 35 and 50 °C) using colorimetric analysis. Additionally, mechanical properties, thermal characteristic and thermal stability were assessed through tensile testing, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The study revealed that an increase in TCB concentrations led to a reduction in lightness (L*). Higher pigment content enhanced thermochromic properties, resulting in more pronounced color changes. The total color difference (ΔE) remained reproducible over five cycles of heating and freezing, and this reproducibility persisted after thermal aging. Tensile strength and elongation at break exhibited improvement with increasing pigment content. Glass transition temperature (Tg) and melting temperature (Tm) of the thermochromic samples showed minimal reduction compared to that of neat PLA, which is 64.2 °C. Crystallinity degree (Xc) increased slightly by 0.2–0.92 %. The thermal stability of the PLA matrix was only marginally affected by the presence of thermochromic pigments.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradable thermochromic polylactic acid (PLA) sensor\",\"authors\":\"Q. Chan, Dai Lam Tran, K.I. Ku Marsilla\",\"doi\":\"10.1515/pac-2024-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study investigates the development of polylactic acid (PLA) by incorporating thermochromic black pigments (TCB) at varying concentrations of 0, 0.5, 1, 2 and 3 wt% through the process of melt blending. The color transition and reversion behaviors of the resulting specimens were examined at different temperatures (−10, 10, 30, 35 and 50 °C) using colorimetric analysis. Additionally, mechanical properties, thermal characteristic and thermal stability were assessed through tensile testing, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The study revealed that an increase in TCB concentrations led to a reduction in lightness (L*). Higher pigment content enhanced thermochromic properties, resulting in more pronounced color changes. The total color difference (ΔE) remained reproducible over five cycles of heating and freezing, and this reproducibility persisted after thermal aging. Tensile strength and elongation at break exhibited improvement with increasing pigment content. Glass transition temperature (Tg) and melting temperature (Tm) of the thermochromic samples showed minimal reduction compared to that of neat PLA, which is 64.2 °C. Crystallinity degree (Xc) increased slightly by 0.2–0.92 %. The thermal stability of the PLA matrix was only marginally affected by the presence of thermochromic pigments.\",\"PeriodicalId\":20911,\"journal\":{\"name\":\"Pure and Applied Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/pac-2024-0023\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2024-0023","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
This study investigates the development of polylactic acid (PLA) by incorporating thermochromic black pigments (TCB) at varying concentrations of 0, 0.5, 1, 2 and 3 wt% through the process of melt blending. The color transition and reversion behaviors of the resulting specimens were examined at different temperatures (−10, 10, 30, 35 and 50 °C) using colorimetric analysis. Additionally, mechanical properties, thermal characteristic and thermal stability were assessed through tensile testing, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The study revealed that an increase in TCB concentrations led to a reduction in lightness (L*). Higher pigment content enhanced thermochromic properties, resulting in more pronounced color changes. The total color difference (ΔE) remained reproducible over five cycles of heating and freezing, and this reproducibility persisted after thermal aging. Tensile strength and elongation at break exhibited improvement with increasing pigment content. Glass transition temperature (Tg) and melting temperature (Tm) of the thermochromic samples showed minimal reduction compared to that of neat PLA, which is 64.2 °C. Crystallinity degree (Xc) increased slightly by 0.2–0.92 %. The thermal stability of the PLA matrix was only marginally affected by the presence of thermochromic pigments.
期刊介绍:
Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.