驱动伊辛模型中的离散时间晶体秩序:热效应、干扰类比和淬火动力学

IF 2.2 3区 物理与天体物理 Q2 MECHANICS
Kangeun Jeong, Bongsoo Kim, Sung Jong Lee
{"title":"驱动伊辛模型中的离散时间晶体秩序:热效应、干扰类比和淬火动力学","authors":"Kangeun Jeong, Bongsoo Kim, Sung Jong Lee","doi":"10.1088/1742-5468/ad37bd","DOIUrl":null,"url":null,"abstract":"\n We explore the emergence of a discrete time crystalline (DTC) order and its stability against thermal fluctuations in a driven kinetic Ising model on a two-dimensional square lattice using the drive protocol invented in a recent work (Gambetta et al 2019 Phys. Rev. E 100 060105(R)). The DTC order is found to be quite robust in the presence of thermal fluctuations. We construct the resulting three-dimensional phase diagram for the DTC order, which manifests a striking resemblance to the jamming phase diagram proposed by Liu and Nagel. This finding may suggest a new way to view the DTC order as a new type of nonequilibrium soft matter. The quench dynamics exhibits a unique feature due to the nature of the employed drive protocol, namely, breakdown of the inverse relationship between the domain growth and defect relaxation, which holds in the usual quench dynamics of the kinetic Ising model.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A discrete time crystal order in the driven Ising model: thermal effects, jamming analogy and quench dynamics\",\"authors\":\"Kangeun Jeong, Bongsoo Kim, Sung Jong Lee\",\"doi\":\"10.1088/1742-5468/ad37bd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We explore the emergence of a discrete time crystalline (DTC) order and its stability against thermal fluctuations in a driven kinetic Ising model on a two-dimensional square lattice using the drive protocol invented in a recent work (Gambetta et al 2019 Phys. Rev. E 100 060105(R)). The DTC order is found to be quite robust in the presence of thermal fluctuations. We construct the resulting three-dimensional phase diagram for the DTC order, which manifests a striking resemblance to the jamming phase diagram proposed by Liu and Nagel. This finding may suggest a new way to view the DTC order as a new type of nonequilibrium soft matter. The quench dynamics exhibits a unique feature due to the nature of the employed drive protocol, namely, breakdown of the inverse relationship between the domain growth and defect relaxation, which holds in the usual quench dynamics of the kinetic Ising model.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad37bd\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad37bd","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用最近一项研究(Gambetta et al 2019 Phys.我们发现,在存在热波动的情况下,DTC 秩相当稳健。我们构建了 DTC 秩的三维相图,它与 Liu 和 Nagel 提出的干扰相图惊人地相似。这一发现为将 DTC 秩视为新型非平衡软物质提供了新的视角。由于所采用的驱动协议的性质,淬火动力学表现出一个独特的特征,即打破了畴增长与缺陷弛豫之间的反比关系,而这种关系在动力学伊辛模型的通常淬火动力学中是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A discrete time crystal order in the driven Ising model: thermal effects, jamming analogy and quench dynamics
We explore the emergence of a discrete time crystalline (DTC) order and its stability against thermal fluctuations in a driven kinetic Ising model on a two-dimensional square lattice using the drive protocol invented in a recent work (Gambetta et al 2019 Phys. Rev. E 100 060105(R)). The DTC order is found to be quite robust in the presence of thermal fluctuations. We construct the resulting three-dimensional phase diagram for the DTC order, which manifests a striking resemblance to the jamming phase diagram proposed by Liu and Nagel. This finding may suggest a new way to view the DTC order as a new type of nonequilibrium soft matter. The quench dynamics exhibits a unique feature due to the nature of the employed drive protocol, namely, breakdown of the inverse relationship between the domain growth and defect relaxation, which holds in the usual quench dynamics of the kinetic Ising model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
12.50%
发文量
210
审稿时长
1.0 months
期刊介绍: JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged. The journal covers different topics which correspond to the following keyword sections. 1. Quantum statistical physics, condensed matter, integrable systems Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo 2. Classical statistical mechanics, equilibrium and non-equilibrium Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo 3. Disordered systems, classical and quantum Scientific Directors: Eduardo Fradkin and Riccardo Zecchina 4. Interdisciplinary statistical mechanics Scientific Directors: Matteo Marsili and Riccardo Zecchina 5. Biological modelling and information Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信