预测中国原油期货波动:基于大规模变量双重特征处理的新证据

IF 3.4 3区 经济学 Q1 ECONOMICS
Gaoxiu Qiao, Yijun Pan, Chao Liang, Lu Wang, Jinghui Wang
{"title":"预测中国原油期货波动:基于大规模变量双重特征处理的新证据","authors":"Gaoxiu Qiao,&nbsp;Yijun Pan,&nbsp;Chao Liang,&nbsp;Lu Wang,&nbsp;Jinghui Wang","doi":"10.1002/for.3131","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to study the volatility forecasting of Chinese crude oil futures from the large-scale variables perspective by considering both the information on international futures markets volatility and technical indicators of Chinese crude oil futures. We employ the dual feature processing method (LASSO-PCA) by integrating least absolute shrinkage and selection operator (LASSO) and principal component analysis (PCA) to extract important factors of the large-scale exogenous variables. Besides the traditional ordinary least squares (OLS) estimation, the nonlinear support vector regression (SVR) approach is employed to integrate with the LASSO-PCA method. The empirical results show that both the OLS and SVR combined with LASSO-PCA can improve the forecasting accuracy, especially SVR-LASSO-PCA owns the best forecasting performance. The analysis of the selected variables finds international futures volatility is chosen more frequently. These results are further validated through a series of robust experiments. Finally, the time difference between China and the United States is also considered in order to obtain more reasonable out-of-sample forecasting.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 7","pages":"2495-2521"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Chinese crude oil futures volatility: New evidence based on dual feature processing of large-scale variables\",\"authors\":\"Gaoxiu Qiao,&nbsp;Yijun Pan,&nbsp;Chao Liang,&nbsp;Lu Wang,&nbsp;Jinghui Wang\",\"doi\":\"10.1002/for.3131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper aims to study the volatility forecasting of Chinese crude oil futures from the large-scale variables perspective by considering both the information on international futures markets volatility and technical indicators of Chinese crude oil futures. We employ the dual feature processing method (LASSO-PCA) by integrating least absolute shrinkage and selection operator (LASSO) and principal component analysis (PCA) to extract important factors of the large-scale exogenous variables. Besides the traditional ordinary least squares (OLS) estimation, the nonlinear support vector regression (SVR) approach is employed to integrate with the LASSO-PCA method. The empirical results show that both the OLS and SVR combined with LASSO-PCA can improve the forecasting accuracy, especially SVR-LASSO-PCA owns the best forecasting performance. The analysis of the selected variables finds international futures volatility is chosen more frequently. These results are further validated through a series of robust experiments. Finally, the time difference between China and the United States is also considered in order to obtain more reasonable out-of-sample forecasting.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":\"43 7\",\"pages\":\"2495-2521\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3131\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3131","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在综合考虑国际期货市场波动信息和中国原油期货技术指标,从大规模变量的角度研究中国原油期货的波动率预测。我们采用最小绝对收缩和选择算子(LASSO)与主成分分析(PCA)相结合的双重特征处理方法(LASSO-PCA)来提取大规模外生变量的重要因子。除了传统的普通最小二乘法(OLS)估计外,还采用了非线性支持向量回归(SVR)方法与 LASSO-PCA 方法相结合。实证结果表明,OLS 和 SVR 结合 LASSO-PCA 都能提高预测精度,其中 SVR-LASSO-PCA 的预测效果最好。对所选变量的分析发现,国际期货波动率被选择的频率更高。这些结果通过一系列稳健实验得到了进一步验证。最后,为了获得更合理的样本外预测,还考虑了中美之间的时间差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Chinese crude oil futures volatility: New evidence based on dual feature processing of large-scale variables

This paper aims to study the volatility forecasting of Chinese crude oil futures from the large-scale variables perspective by considering both the information on international futures markets volatility and technical indicators of Chinese crude oil futures. We employ the dual feature processing method (LASSO-PCA) by integrating least absolute shrinkage and selection operator (LASSO) and principal component analysis (PCA) to extract important factors of the large-scale exogenous variables. Besides the traditional ordinary least squares (OLS) estimation, the nonlinear support vector regression (SVR) approach is employed to integrate with the LASSO-PCA method. The empirical results show that both the OLS and SVR combined with LASSO-PCA can improve the forecasting accuracy, especially SVR-LASSO-PCA owns the best forecasting performance. The analysis of the selected variables finds international futures volatility is chosen more frequently. These results are further validated through a series of robust experiments. Finally, the time difference between China and the United States is also considered in order to obtain more reasonable out-of-sample forecasting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信