菲博-帕斯卡序列空间和相关矩阵变换的研究以及非紧凑性豪斯多夫度量的应用

Pub Date : 2024-04-24 DOI:10.1515/gmj-2024-2021
M. C. Dağlı, Taja Yaying
{"title":"菲博-帕斯卡序列空间和相关矩阵变换的研究以及非紧凑性豪斯多夫度量的应用","authors":"M. C. Dağlı, Taja Yaying","doi":"10.1515/gmj-2024-2021","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we introduce Fibo-Pascal sequence spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mn>0</m:mn>\n <m:mo><</m:mo>\n <m:mi>p</m:mi>\n <m:mo><</m:mo>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0223.png\" />\n <jats:tex-math>{0<p<\\infty}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9997\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> through the utilization of the Fibo-Pascal matrix <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9996\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi>P</m:mi>\n <m:mi>F</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0250.png\" />\n <jats:tex-math>{P^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. We establish that both <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9995\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9994\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> are <jats:italic>BK</jats:italic>-spaces, enjoying a linear isomorphism with the classical spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9993\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mi mathvariant=\"normal\">ℓ</m:mi>\n <m:mi>p</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0341.png\" />\n <jats:tex-math>{\\ell_{p}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9992\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mi mathvariant=\"normal\">ℓ</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0337.png\" />\n <jats:tex-math>{\\ell_{\\infty}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, respectively. Further contributing to the depth of our investigation, we proceed to derive the Schauder basis of the space <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9991\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, alongside an exhaustive computation of the α-, β-, and γ-duals for both spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9990\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9989\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. Additionally, we undertake the task of characterizing certain classes of matrix mappings pertaining to the spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9988\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9987\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. The final section of this study is dedicated to the met","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on Fibo-Pascal sequence spaces and associated matrix transformations and applications of Hausdorff measure of non-compactness\",\"authors\":\"M. C. Dağlı, Taja Yaying\",\"doi\":\"10.1515/gmj-2024-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>In this article, we introduce Fibo-Pascal sequence spaces <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9999\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi>p</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0255.png\\\" />\\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9998\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mn>0</m:mn>\\n <m:mo><</m:mo>\\n <m:mi>p</m:mi>\\n <m:mo><</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0223.png\\\" />\\n <jats:tex-math>{0<p<\\\\infty}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, and <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9997\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0253.png\\\" />\\n <jats:tex-math>{P_{\\\\infty}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> through the utilization of the Fibo-Pascal matrix <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9996\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mi>P</m:mi>\\n <m:mi>F</m:mi>\\n </m:msup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0250.png\\\" />\\n <jats:tex-math>{P^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>. We establish that both <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9995\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi>p</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0255.png\\\" />\\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9994\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0253.png\\\" />\\n <jats:tex-math>{P_{\\\\infty}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> are <jats:italic>BK</jats:italic>-spaces, enjoying a linear isomorphism with the classical spaces <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9993\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi>\\n <m:mi>p</m:mi>\\n </m:msub>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0341.png\\\" />\\n <jats:tex-math>{\\\\ell_{p}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9992\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n </m:msub>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0337.png\\\" />\\n <jats:tex-math>{\\\\ell_{\\\\infty}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, respectively. Further contributing to the depth of our investigation, we proceed to derive the Schauder basis of the space <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9991\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi>p</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0255.png\\\" />\\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, alongside an exhaustive computation of the α-, β-, and γ-duals for both spaces <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9990\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi>p</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0255.png\\\" />\\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9989\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0253.png\\\" />\\n <jats:tex-math>{P_{\\\\infty}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>. Additionally, we undertake the task of characterizing certain classes of matrix mappings pertaining to the spaces <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9988\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi>p</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0255.png\\\" />\\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9987\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0253.png\\\" />\\n <jats:tex-math>{P_{\\\\infty}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>. The final section of this study is dedicated to the met\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过利用菲波帕斯卡矩阵 P F {P_{p}^{F}} 引入菲波帕斯卡序列空间 P p F {P_{p}^{F}} , 0 p ∞ {0 , 和 P ∞ F {P_{infty}^{F}} 通过利用 Fibo-Pascal 矩阵 P F {P^{F}}. .我们确定 P p F {P_{p}^{F}} 和 P ∞ F {P_{infty}^{F}} 都是 BK 空间,分别与经典空间 ℓ p {\ell_{p} 和 ℓ ∞ {\ell_{infty}} 具有线性同构性。} 分别。为了进一步加深研究,我们将继续推导 P p F {P_{p}^{F} 空间的 Schauder 基础,并对其进行详尽的计算。} 同时,我们还详尽计算了 P p F {P_{p}^{F} 和 P ∞ F {P_{infty}^{F} 两个空间的 α-、β- 和 γ 对偶。} .此外,我们还负责描述与空间 P p F {P_{p}^{F}} 和 P ∞ F {P_{\infty}^{F}} 有关的某些矩阵映射类别。 .本研究的最后一节将专门讨论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A study on Fibo-Pascal sequence spaces and associated matrix transformations and applications of Hausdorff measure of non-compactness
In this article, we introduce Fibo-Pascal sequence spaces P p F {P_{p}^{F}} , 0 < p < {0 , and P F {P_{\infty}^{F}} through the utilization of the Fibo-Pascal matrix P F {P^{F}} . We establish that both P p F {P_{p}^{F}} and P F {P_{\infty}^{F}} are BK-spaces, enjoying a linear isomorphism with the classical spaces p {\ell_{p}} and {\ell_{\infty}} , respectively. Further contributing to the depth of our investigation, we proceed to derive the Schauder basis of the space P p F {P_{p}^{F}} , alongside an exhaustive computation of the α-, β-, and γ-duals for both spaces P p F {P_{p}^{F}} and P F {P_{\infty}^{F}} . Additionally, we undertake the task of characterizing certain classes of matrix mappings pertaining to the spaces P p F {P_{p}^{F}} and P F {P_{\infty}^{F}} . The final section of this study is dedicated to the met
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信