{"title":"菲博-帕斯卡序列空间和相关矩阵变换的研究以及非紧凑性豪斯多夫度量的应用","authors":"M. C. Dağlı, Taja Yaying","doi":"10.1515/gmj-2024-2021","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we introduce Fibo-Pascal sequence spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mn>0</m:mn>\n <m:mo><</m:mo>\n <m:mi>p</m:mi>\n <m:mo><</m:mo>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0223.png\" />\n <jats:tex-math>{0<p<\\infty}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9997\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> through the utilization of the Fibo-Pascal matrix <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9996\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi>P</m:mi>\n <m:mi>F</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0250.png\" />\n <jats:tex-math>{P^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. We establish that both <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9995\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9994\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> are <jats:italic>BK</jats:italic>-spaces, enjoying a linear isomorphism with the classical spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9993\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mi mathvariant=\"normal\">ℓ</m:mi>\n <m:mi>p</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0341.png\" />\n <jats:tex-math>{\\ell_{p}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9992\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mi mathvariant=\"normal\">ℓ</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0337.png\" />\n <jats:tex-math>{\\ell_{\\infty}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, respectively. Further contributing to the depth of our investigation, we proceed to derive the Schauder basis of the space <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9991\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, alongside an exhaustive computation of the α-, β-, and γ-duals for both spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9990\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9989\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. Additionally, we undertake the task of characterizing certain classes of matrix mappings pertaining to the spaces <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9988\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi>p</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0255.png\" />\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula id=\"j_gmj-2024-2021_ineq_9987\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msubsup>\n <m:mi>P</m:mi>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n <m:mi>F</m:mi>\n </m:msubsup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2021_eq_0253.png\" />\n <jats:tex-math>{P_{\\infty}^{F}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. The final section of this study is dedicated to the met","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on Fibo-Pascal sequence spaces and associated matrix transformations and applications of Hausdorff measure of non-compactness\",\"authors\":\"M. C. Dağlı, Taja Yaying\",\"doi\":\"10.1515/gmj-2024-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>In this article, we introduce Fibo-Pascal sequence spaces <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9999\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi>p</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0255.png\\\" />\\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9998\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mn>0</m:mn>\\n <m:mo><</m:mo>\\n <m:mi>p</m:mi>\\n <m:mo><</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0223.png\\\" />\\n <jats:tex-math>{0<p<\\\\infty}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, and <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9997\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0253.png\\\" />\\n <jats:tex-math>{P_{\\\\infty}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> through the utilization of the Fibo-Pascal matrix <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9996\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mi>P</m:mi>\\n <m:mi>F</m:mi>\\n </m:msup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0250.png\\\" />\\n <jats:tex-math>{P^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>. We establish that both <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9995\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi>p</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0255.png\\\" />\\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9994\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0253.png\\\" />\\n <jats:tex-math>{P_{\\\\infty}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> are <jats:italic>BK</jats:italic>-spaces, enjoying a linear isomorphism with the classical spaces <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9993\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi>\\n <m:mi>p</m:mi>\\n </m:msub>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0341.png\\\" />\\n <jats:tex-math>{\\\\ell_{p}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9992\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n </m:msub>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0337.png\\\" />\\n <jats:tex-math>{\\\\ell_{\\\\infty}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, respectively. Further contributing to the depth of our investigation, we proceed to derive the Schauder basis of the space <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9991\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi>p</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0255.png\\\" />\\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, alongside an exhaustive computation of the α-, β-, and γ-duals for both spaces <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9990\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi>p</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0255.png\\\" />\\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9989\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0253.png\\\" />\\n <jats:tex-math>{P_{\\\\infty}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>. Additionally, we undertake the task of characterizing certain classes of matrix mappings pertaining to the spaces <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9988\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi>p</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0255.png\\\" />\\n <jats:tex-math>{P_{p}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and <jats:inline-formula id=\\\"j_gmj-2024-2021_ineq_9987\\\">\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msubsup>\\n <m:mi>P</m:mi>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n <m:mi>F</m:mi>\\n </m:msubsup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2021_eq_0253.png\\\" />\\n <jats:tex-math>{P_{\\\\infty}^{F}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>. The final section of this study is dedicated to the met\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们通过利用菲波帕斯卡矩阵 P F {P_{p}^{F}} 引入菲波帕斯卡序列空间 P p F {P_{p}^{F}} , 0 p ∞ {0 , 和 P ∞ F {P_{infty}^{F}} 通过利用 Fibo-Pascal 矩阵 P F {P^{F}}. .我们确定 P p F {P_{p}^{F}} 和 P ∞ F {P_{infty}^{F}} 都是 BK 空间,分别与经典空间 ℓ p {\ell_{p} 和 ℓ ∞ {\ell_{infty}} 具有线性同构性。} 分别。为了进一步加深研究,我们将继续推导 P p F {P_{p}^{F} 空间的 Schauder 基础,并对其进行详尽的计算。} 同时,我们还详尽计算了 P p F {P_{p}^{F} 和 P ∞ F {P_{infty}^{F} 两个空间的 α-、β- 和 γ 对偶。} .此外,我们还负责描述与空间 P p F {P_{p}^{F}} 和 P ∞ F {P_{\infty}^{F}} 有关的某些矩阵映射类别。 .本研究的最后一节将专门讨论
A study on Fibo-Pascal sequence spaces and associated matrix transformations and applications of Hausdorff measure of non-compactness
In this article, we introduce Fibo-Pascal sequence spaces PpF{P_{p}^{F}}, 0<p<∞{0
, and P∞F{P_{\infty}^{F}} through the utilization of the Fibo-Pascal matrix PF{P^{F}}. We establish that both PpF{P_{p}^{F}} and P∞F{P_{\infty}^{F}} are BK-spaces, enjoying a linear isomorphism with the classical spaces ℓp{\ell_{p}} and ℓ∞{\ell_{\infty}}, respectively. Further contributing to the depth of our investigation, we proceed to derive the Schauder basis of the space PpF{P_{p}^{F}}, alongside an exhaustive computation of the α-, β-, and γ-duals for both spaces PpF{P_{p}^{F}} and P∞F{P_{\infty}^{F}}. Additionally, we undertake the task of characterizing certain classes of matrix mappings pertaining to the spaces PpF{P_{p}^{F}} and P∞F{P_{\infty}^{F}}. The final section of this study is dedicated to the met