Leonardo de Paula S. Ferreira, R. Teloli, Samuel da Silva, Eloi Figueiredo, Nuno Maia, C. A. Cimini
{"title":"有限实验数据下复合材料结构健康监测的贝叶斯数据驱动框架","authors":"Leonardo de Paula S. Ferreira, R. Teloli, Samuel da Silva, Eloi Figueiredo, Nuno Maia, C. A. Cimini","doi":"10.1177/14759217241236801","DOIUrl":null,"url":null,"abstract":"Ultrasonic-guided waves can be used to monitor the health of thin-walled structures. However, the run of experimental damage tests on materials like carbon fiber-reinforced plastics can be impractical and costly. Instead, numerical models can be used to create hybrid datasets to train machine learning algorithms, integrating data from numerical and experimental tests. This paper presents a Bayesian-driven framework to compensate for limited experimental data regarding Lamb wave propagation in composite plates. Using Bayesian inference, the framework updates a numerical finite element model, considering observed uncertainties by sampling posterior probability density functions for input parameters using Markov–Chain Monte Carlo simulations with the Metropolis-Hastings algorithm. A neural network surrogate model speeds-up these simulations, leading to a model that replicates the uncertain experimental setup. This model then generates data to augment true experimental data. Finally, a one-dimensional convolutional neural network is trained on a three different datasets to analyze Lamb wave signals and assess damage. Comparing training strategies shows the hybrid dataset augmented by samples generated by the updated FE model gives the most accurate damage size predictions.","PeriodicalId":515545,"journal":{"name":"Structural Health Monitoring","volume":"43 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian data-driven framework for structural health monitoring of composite structures under limited experimental data\",\"authors\":\"Leonardo de Paula S. Ferreira, R. Teloli, Samuel da Silva, Eloi Figueiredo, Nuno Maia, C. A. Cimini\",\"doi\":\"10.1177/14759217241236801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasonic-guided waves can be used to monitor the health of thin-walled structures. However, the run of experimental damage tests on materials like carbon fiber-reinforced plastics can be impractical and costly. Instead, numerical models can be used to create hybrid datasets to train machine learning algorithms, integrating data from numerical and experimental tests. This paper presents a Bayesian-driven framework to compensate for limited experimental data regarding Lamb wave propagation in composite plates. Using Bayesian inference, the framework updates a numerical finite element model, considering observed uncertainties by sampling posterior probability density functions for input parameters using Markov–Chain Monte Carlo simulations with the Metropolis-Hastings algorithm. A neural network surrogate model speeds-up these simulations, leading to a model that replicates the uncertain experimental setup. This model then generates data to augment true experimental data. Finally, a one-dimensional convolutional neural network is trained on a three different datasets to analyze Lamb wave signals and assess damage. Comparing training strategies shows the hybrid dataset augmented by samples generated by the updated FE model gives the most accurate damage size predictions.\",\"PeriodicalId\":515545,\"journal\":{\"name\":\"Structural Health Monitoring\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14759217241236801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14759217241236801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
超声波可用于监测薄壁结构的健康状况。然而,对碳纤维增强塑料等材料进行试验性损伤测试既不现实,成本也很高。相反,可以利用数值模型创建混合数据集来训练机器学习算法,将数值测试和实验测试的数据整合在一起。本文提出了一种贝叶斯驱动框架,用于弥补复合材料板中有限的兰姆波传播实验数据。利用贝叶斯推理,该框架更新了数值有限元模型,通过使用 Metropolis-Hastings 算法的 Markov-Chain Monte Carlo 仿真对输入参数的后验概率密度函数进行采样,从而考虑到观察到的不确定性。神经网络代用模型可加快模拟速度,从而产生一个可复制不确定实验设置的模型。然后,该模型生成数据以补充真实的实验数据。最后,在三个不同的数据集上训练一维卷积神经网络,以分析λ波信号并评估损坏情况。对训练策略进行比较后发现,由更新的 FE 模型生成的样本增强的混合数据集能够提供最准确的损伤大小预测。
Bayesian data-driven framework for structural health monitoring of composite structures under limited experimental data
Ultrasonic-guided waves can be used to monitor the health of thin-walled structures. However, the run of experimental damage tests on materials like carbon fiber-reinforced plastics can be impractical and costly. Instead, numerical models can be used to create hybrid datasets to train machine learning algorithms, integrating data from numerical and experimental tests. This paper presents a Bayesian-driven framework to compensate for limited experimental data regarding Lamb wave propagation in composite plates. Using Bayesian inference, the framework updates a numerical finite element model, considering observed uncertainties by sampling posterior probability density functions for input parameters using Markov–Chain Monte Carlo simulations with the Metropolis-Hastings algorithm. A neural network surrogate model speeds-up these simulations, leading to a model that replicates the uncertain experimental setup. This model then generates data to augment true experimental data. Finally, a one-dimensional convolutional neural network is trained on a three different datasets to analyze Lamb wave signals and assess damage. Comparing training strategies shows the hybrid dataset augmented by samples generated by the updated FE model gives the most accurate damage size predictions.