{"title":"通过原位 H2 等离子体处理将 Ge 基底上基于 HfO2 的栅极堆的可调 EOT 放大至 0.","authors":"Hui-Hsuan Li, Shang-Chiun Chen, YuHsien Lin, ChaoHsin Chien","doi":"10.1149/2162-8777/ad430a","DOIUrl":null,"url":null,"abstract":"\n We propose a continuous fabrication method for HfO2-based gate stacks on a Ge bulk p-type metal–oxide–semiconductor capacitor (pMOSCAP) with HfGeOx interfacial layer by H2 plasma treatment through in situ plasma-enhanced atomic layer deposition. The electrical characteristics showed that the proper hydrogen plasma treatment could obtain an aggressively scaled equivalent oxide thickness of approximately 0.55 nm and a relatively low gate leakage current of 8 × 10-4 A/cm2 under PMA 500C.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable EOT Scaling Down to 0. 55 nm for HfO2-Based Gate-Stacks on Ge Substrate by In Situ H2 Plasma Treatment\",\"authors\":\"Hui-Hsuan Li, Shang-Chiun Chen, YuHsien Lin, ChaoHsin Chien\",\"doi\":\"10.1149/2162-8777/ad430a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We propose a continuous fabrication method for HfO2-based gate stacks on a Ge bulk p-type metal–oxide–semiconductor capacitor (pMOSCAP) with HfGeOx interfacial layer by H2 plasma treatment through in situ plasma-enhanced atomic layer deposition. The electrical characteristics showed that the proper hydrogen plasma treatment could obtain an aggressively scaled equivalent oxide thickness of approximately 0.55 nm and a relatively low gate leakage current of 8 × 10-4 A/cm2 under PMA 500C.\",\"PeriodicalId\":504734,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad430a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad430a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tunable EOT Scaling Down to 0. 55 nm for HfO2-Based Gate-Stacks on Ge Substrate by In Situ H2 Plasma Treatment
We propose a continuous fabrication method for HfO2-based gate stacks on a Ge bulk p-type metal–oxide–semiconductor capacitor (pMOSCAP) with HfGeOx interfacial layer by H2 plasma treatment through in situ plasma-enhanced atomic layer deposition. The electrical characteristics showed that the proper hydrogen plasma treatment could obtain an aggressively scaled equivalent oxide thickness of approximately 0.55 nm and a relatively low gate leakage current of 8 × 10-4 A/cm2 under PMA 500C.