用于软件辅助硬件设计验证的机器学习调查:过去、现在与未来

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Nan Wu, Yingjie Li, Hang Yang, Hanqiu Chen, Steve Dai, Cong Hao, Cunxi Yu, Yuan Xie
{"title":"用于软件辅助硬件设计验证的机器学习调查:过去、现在与未来","authors":"Nan Wu, Yingjie Li, Hang Yang, Hanqiu Chen, Steve Dai, Cong Hao, Cunxi Yu, Yuan Xie","doi":"10.1145/3661308","DOIUrl":null,"url":null,"abstract":"With the ever-increasing hardware design complexity comes the realization that efforts required for hardware verification increase at an even faster rate. Driven by the push from the desired verification productivity boost and the pull from leap-ahead capabilities of machine learning (ML), recent years have witnessed the emergence of exploiting ML-based techniques to improve the efficiency of hardware verification. In this paper, we present a panoramic view of how ML-based techniques are embraced in hardware design verification, from formal verification to simulation-based verification, from academia to industry, and from current progress to future prospects. We envision that the adoption of ML-based techniques will pave the road for more scalable, more intelligent, and more productive hardware verification.","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survey of Machine Learning for Software-assisted Hardware Design Verification: Past, Present, and Prospect\",\"authors\":\"Nan Wu, Yingjie Li, Hang Yang, Hanqiu Chen, Steve Dai, Cong Hao, Cunxi Yu, Yuan Xie\",\"doi\":\"10.1145/3661308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the ever-increasing hardware design complexity comes the realization that efforts required for hardware verification increase at an even faster rate. Driven by the push from the desired verification productivity boost and the pull from leap-ahead capabilities of machine learning (ML), recent years have witnessed the emergence of exploiting ML-based techniques to improve the efficiency of hardware verification. In this paper, we present a panoramic view of how ML-based techniques are embraced in hardware design verification, from formal verification to simulation-based verification, from academia to industry, and from current progress to future prospects. We envision that the adoption of ML-based techniques will pave the road for more scalable, more intelligent, and more productive hardware verification.\",\"PeriodicalId\":50944,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3661308\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3661308","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着硬件设计复杂性的不断增加,人们意识到硬件验证所需的工作量也在以更快的速度增加。在希望提高验证生产率的推动下,以及机器学习(ML)飞跃能力的拉动下,近年来出现了利用基于 ML 的技术来提高硬件验证效率的趋势。在本文中,我们从形式验证到基于仿真的验证,从学术界到工业界,从当前进展到未来展望,全景展示了基于 ML 的技术在硬件设计验证中的应用。我们设想,基于 ML 的技术的采用将为更可扩展、更智能和更高效的硬件验证铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Survey of Machine Learning for Software-assisted Hardware Design Verification: Past, Present, and Prospect
With the ever-increasing hardware design complexity comes the realization that efforts required for hardware verification increase at an even faster rate. Driven by the push from the desired verification productivity boost and the pull from leap-ahead capabilities of machine learning (ML), recent years have witnessed the emergence of exploiting ML-based techniques to improve the efficiency of hardware verification. In this paper, we present a panoramic view of how ML-based techniques are embraced in hardware design verification, from formal verification to simulation-based verification, from academia to industry, and from current progress to future prospects. We envision that the adoption of ML-based techniques will pave the road for more scalable, more intelligent, and more productive hardware verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信