Johanna Galvis, J. Guyon, Benjamin Dartigues, Helge Hecht, Björn Grüning, Florian Specque, Hayssam Soueidan, S. Karkar, Thomas Daubon, M. Nikolski
{"title":"DIMet:用于靶向同位素标记代谢组学数据差异分析的开源工具。","authors":"Johanna Galvis, J. Guyon, Benjamin Dartigues, Helge Hecht, Björn Grüning, Florian Specque, Hayssam Soueidan, S. Karkar, Thomas Daubon, M. Nikolski","doi":"10.1093/bioinformatics/btae282","DOIUrl":null,"url":null,"abstract":"MOTIVATION\nMany diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the microenvironment. Stable isotope-resolved metabolomics and downstream data analyses are widely used techniques for unraveling cells' metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic solutions exist for the differential analysis of Stable Isotope-Resolved Metabolomics data, there is currently no available resource providing a comprehensive toolbox.\n\n\nRESULTS\nIn this work, we present DIMet, a one-stop comprehensive tool for differential analysis of targeted tracer data. DIMet accepts metabolite total abundances, isotopologue contributions, and isotopic mean enrichment, and supports differential comparison (pairwise and multi-group), time-series analyses, and labeling profile comparison. Moreover, it integrates transcriptomics and targeted metabolomics data through network-based metabolograms. We illustrate the use of DIMet in real SIRM datasets obtained from Glioblastoma P3 cell-line samples. DIMet is open-source, and is readily available for routine downstream analysis of isotope-labeled targeted metabolomics data, as it can be used both in the command line interface or as a complete toolkit in the public Galaxy Europe and Workfow4Metabolomics web platforms.\n\n\nAVAILABILITY\nDIMet is freely available at https://github.com/cbib/DIMet, and through https://usegalaxy.eu and https://workflow4metabolomics.usegalaxy.fr. All the datasets are available at Zenodo https://zenodo.org/records/10925786.\n\n\nSUPPLEMENTARY INFORMATION\nSupplementary data are available at Bioinformatics online.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIMet: An open-source tool for Differential analysis of targeted Isotope-labeled Metabolomics data.\",\"authors\":\"Johanna Galvis, J. Guyon, Benjamin Dartigues, Helge Hecht, Björn Grüning, Florian Specque, Hayssam Soueidan, S. Karkar, Thomas Daubon, M. Nikolski\",\"doi\":\"10.1093/bioinformatics/btae282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MOTIVATION\\nMany diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the microenvironment. Stable isotope-resolved metabolomics and downstream data analyses are widely used techniques for unraveling cells' metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic solutions exist for the differential analysis of Stable Isotope-Resolved Metabolomics data, there is currently no available resource providing a comprehensive toolbox.\\n\\n\\nRESULTS\\nIn this work, we present DIMet, a one-stop comprehensive tool for differential analysis of targeted tracer data. DIMet accepts metabolite total abundances, isotopologue contributions, and isotopic mean enrichment, and supports differential comparison (pairwise and multi-group), time-series analyses, and labeling profile comparison. Moreover, it integrates transcriptomics and targeted metabolomics data through network-based metabolograms. We illustrate the use of DIMet in real SIRM datasets obtained from Glioblastoma P3 cell-line samples. DIMet is open-source, and is readily available for routine downstream analysis of isotope-labeled targeted metabolomics data, as it can be used both in the command line interface or as a complete toolkit in the public Galaxy Europe and Workfow4Metabolomics web platforms.\\n\\n\\nAVAILABILITY\\nDIMet is freely available at https://github.com/cbib/DIMet, and through https://usegalaxy.eu and https://workflow4metabolomics.usegalaxy.fr. All the datasets are available at Zenodo https://zenodo.org/records/10925786.\\n\\n\\nSUPPLEMENTARY INFORMATION\\nSupplementary data are available at Bioinformatics online.\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae282\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae282","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
DIMet: An open-source tool for Differential analysis of targeted Isotope-labeled Metabolomics data.
MOTIVATION
Many diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the microenvironment. Stable isotope-resolved metabolomics and downstream data analyses are widely used techniques for unraveling cells' metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic solutions exist for the differential analysis of Stable Isotope-Resolved Metabolomics data, there is currently no available resource providing a comprehensive toolbox.
RESULTS
In this work, we present DIMet, a one-stop comprehensive tool for differential analysis of targeted tracer data. DIMet accepts metabolite total abundances, isotopologue contributions, and isotopic mean enrichment, and supports differential comparison (pairwise and multi-group), time-series analyses, and labeling profile comparison. Moreover, it integrates transcriptomics and targeted metabolomics data through network-based metabolograms. We illustrate the use of DIMet in real SIRM datasets obtained from Glioblastoma P3 cell-line samples. DIMet is open-source, and is readily available for routine downstream analysis of isotope-labeled targeted metabolomics data, as it can be used both in the command line interface or as a complete toolkit in the public Galaxy Europe and Workfow4Metabolomics web platforms.
AVAILABILITY
DIMet is freely available at https://github.com/cbib/DIMet, and through https://usegalaxy.eu and https://workflow4metabolomics.usegalaxy.fr. All the datasets are available at Zenodo https://zenodo.org/records/10925786.
SUPPLEMENTARY INFORMATION
Supplementary data are available at Bioinformatics online.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.