{"title":"非线性薛定谔系统的节点解","authors":"Xue Zhou, Xiangqing Liu","doi":"10.58997/ejde.2024.31","DOIUrl":null,"url":null,"abstract":"In this article we consider the nonlinear Schrodinger system $$\\displaylines{ - \\Delta u_j + \\lambda_j u_j = \\sum_{i=1}^k \\beta_{ij} u_i^2 u_j, \\quad \\hbox{in } \\Omega, \\cr u_j ( x ) = 0,\\quad \\hbox{on } \\partial \\Omega , \\; j=1,l\\dots,k , }$$ where \\(\\Omega\\subset \\mathbb{R}^N \\) (\\(N=2,3\\)) is a bounded smooth domain, \\(\\lambda_j> 0\\), \\(j=1,\\ldots,k\\), \\(\\beta_{ij}\\) are constants satisfying \\(\\beta_{jj}>0\\), \\(\\beta_{ij}=\\beta_{ji}\\leq 0 \\) for \\(1\\leq i< j\\leq k\\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method. \nFor more information see https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html \n ","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nodal solutions for nonlinear Schrodinger systems\",\"authors\":\"Xue Zhou, Xiangqing Liu\",\"doi\":\"10.58997/ejde.2024.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we consider the nonlinear Schrodinger system $$\\\\displaylines{ - \\\\Delta u_j + \\\\lambda_j u_j = \\\\sum_{i=1}^k \\\\beta_{ij} u_i^2 u_j, \\\\quad \\\\hbox{in } \\\\Omega, \\\\cr u_j ( x ) = 0,\\\\quad \\\\hbox{on } \\\\partial \\\\Omega , \\\\; j=1,l\\\\dots,k , }$$ where \\\\(\\\\Omega\\\\subset \\\\mathbb{R}^N \\\\) (\\\\(N=2,3\\\\)) is a bounded smooth domain, \\\\(\\\\lambda_j> 0\\\\), \\\\(j=1,\\\\ldots,k\\\\), \\\\(\\\\beta_{ij}\\\\) are constants satisfying \\\\(\\\\beta_{jj}>0\\\\), \\\\(\\\\beta_{ij}=\\\\beta_{ji}\\\\leq 0 \\\\) for \\\\(1\\\\leq i< j\\\\leq k\\\\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method. \\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html \\n \",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.31\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.31","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this article we consider the nonlinear Schrodinger system $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in } \Omega, \cr u_j ( x ) = 0,\quad \hbox{on } \partial \Omega , \; j=1,l\dots,k , }$$ where \(\Omega\subset \mathbb{R}^N \) (\(N=2,3\)) is a bounded smooth domain, \(\lambda_j> 0\), \(j=1,\ldots,k\), \(\beta_{ij}\) are constants satisfying \(\beta_{jj}>0\), \(\beta_{ij}=\beta_{ji}\leq 0 \) for \(1\leq i< j\leq k\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method.
For more information see https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.