非线性薛定谔系统的节点解

IF 0.8 4区 数学 Q2 MATHEMATICS
Xue Zhou, Xiangqing Liu
{"title":"非线性薛定谔系统的节点解","authors":"Xue Zhou, Xiangqing Liu","doi":"10.58997/ejde.2024.31","DOIUrl":null,"url":null,"abstract":"In this article we consider the nonlinear Schrodinger system $$\\displaylines{ - \\Delta u_j + \\lambda_j u_j = \\sum_{i=1}^k \\beta_{ij} u_i^2 u_j, \\quad \\hbox{in } \\Omega, \\cr u_j ( x ) = 0,\\quad \\hbox{on } \\partial \\Omega , \\; j=1,l\\dots,k , }$$ where \\(\\Omega\\subset \\mathbb{R}^N \\) (\\(N=2,3\\)) is a bounded smooth domain, \\(\\lambda_j> 0\\), \\(j=1,\\ldots,k\\), \\(\\beta_{ij}\\) are constants satisfying \\(\\beta_{jj}>0\\), \\(\\beta_{ij}=\\beta_{ji}\\leq 0 \\) for \\(1\\leq i< j\\leq k\\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method. \nFor more information see  https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html \n ","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nodal solutions for nonlinear Schrodinger systems\",\"authors\":\"Xue Zhou, Xiangqing Liu\",\"doi\":\"10.58997/ejde.2024.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we consider the nonlinear Schrodinger system $$\\\\displaylines{ - \\\\Delta u_j + \\\\lambda_j u_j = \\\\sum_{i=1}^k \\\\beta_{ij} u_i^2 u_j, \\\\quad \\\\hbox{in } \\\\Omega, \\\\cr u_j ( x ) = 0,\\\\quad \\\\hbox{on } \\\\partial \\\\Omega , \\\\; j=1,l\\\\dots,k , }$$ where \\\\(\\\\Omega\\\\subset \\\\mathbb{R}^N \\\\) (\\\\(N=2,3\\\\)) is a bounded smooth domain, \\\\(\\\\lambda_j> 0\\\\), \\\\(j=1,\\\\ldots,k\\\\), \\\\(\\\\beta_{ij}\\\\) are constants satisfying \\\\(\\\\beta_{jj}>0\\\\), \\\\(\\\\beta_{ij}=\\\\beta_{ji}\\\\leq 0 \\\\) for \\\\(1\\\\leq i< j\\\\leq k\\\\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method. \\nFor more information see  https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html \\n \",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.31\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.31","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了非线性薛定谔系统 $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in }\Omega, \cr u_j ( x ) = 0,\quad \hbox{on }.\Omega, \cr u_j ( x ) = 0,\quad \hbox{on }\partial \Omega ,\;j=1,l\dots,k , }$$ 其中 \(\Omega\subset \mathbb{R}^N \) (\(N=2,3\)) 是一个有界的光滑域, \(\lambda_j> 0\), \(j=1、\(beta_{jj}>0),(beta_{ij}=beta_{ji}/leq 0\) for\(1\leq i< j\leq k\).符号变化解的存在性是通过截断法和降流不变集法证明的。更多信息见 https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nodal solutions for nonlinear Schrodinger systems
In this article we consider the nonlinear Schrodinger system $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in } \Omega, \cr u_j ( x ) = 0,\quad \hbox{on } \partial \Omega , \; j=1,l\dots,k , }$$ where \(\Omega\subset \mathbb{R}^N \) (\(N=2,3\)) is a bounded smooth domain, \(\lambda_j> 0\), \(j=1,\ldots,k\), \(\beta_{ij}\) are constants satisfying \(\beta_{jj}>0\), \(\beta_{ij}=\beta_{ji}\leq 0 \) for \(1\leq i< j\leq k\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method. For more information see  https://ejde.math.txstate.edu/Volumes/2024/31/abstr.html  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信