作为前驱体复合涂层的金属酚醛网络可增强正向渗透膜的防污性能

Yan Sun, Xiaoyang Xie, Xiangdong Ma, Qianying Feng, Changhao Xu, Jiaqi Shen, Yuxin Gu, Chuanliang Zhao, JiaoJie He
{"title":"作为前驱体复合涂层的金属酚醛网络可增强正向渗透膜的防污性能","authors":"Yan Sun, Xiaoyang Xie, Xiangdong Ma, Qianying Feng, Changhao Xu, Jiaqi Shen, Yuxin Gu, Chuanliang Zhao, JiaoJie He","doi":"10.2166/wst.2024.129","DOIUrl":null,"url":null,"abstract":"\n \n In this study, a multi-functional layer was developed based on the commercially available cellulose triacetate (CTA) forward osmosis (FO) membrane to improve its antifouling properties. Tannic acid/ferric ion (TA/Fe3+) complexes were firstly coated as a precursor layer on the membrane surface via self-assembly. Afterwards, the tannic acid/diethylenetriamine (TA/DETA) hydrophilic functional layer was further coated, following Ag/polyvinylpyrrolidone (PVP) anti-bacterial layer was formed in situ through the reducibility of TA to obtain TA/Fe3+-TA/DETA-Ag/PVP-modified membrane. The optimized precursor layer was acquired by adjusting the buffer solution pH to 8, TA/Fe3+ ratio to 4 and the number of self-assembled layers to 5. The permeability testing results illustrated that the functional layer had an insignificant effect on the membrane transport parameters. The TA/Fe3+-TA/DETA-Ag/PVP-modified membrane simultaneously exhibited excellent physical and chemical stability. The coated membrane also demonstrated enhanced anti-bacterial properties, achieving 98.63 and 97.30% inhibition against Staphylococcus aureus and Escherichia coli, respectively. Furthermore, the dynamic fouling experiment showed a 12% higher water flux decrease for the TA/Fe3+-TA/DETA-Ag/PVP CTA membrane compared to the nascent CTA membrane, which proved its excellent antifouling performance. This work provides a feasible strategy to heighten the antifouling property of the CTA FO membrane.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":"107 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-phenolic network as precursor complex coating for forward osmosis membrane with enhanced antifouling property\",\"authors\":\"Yan Sun, Xiaoyang Xie, Xiangdong Ma, Qianying Feng, Changhao Xu, Jiaqi Shen, Yuxin Gu, Chuanliang Zhao, JiaoJie He\",\"doi\":\"10.2166/wst.2024.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n In this study, a multi-functional layer was developed based on the commercially available cellulose triacetate (CTA) forward osmosis (FO) membrane to improve its antifouling properties. Tannic acid/ferric ion (TA/Fe3+) complexes were firstly coated as a precursor layer on the membrane surface via self-assembly. Afterwards, the tannic acid/diethylenetriamine (TA/DETA) hydrophilic functional layer was further coated, following Ag/polyvinylpyrrolidone (PVP) anti-bacterial layer was formed in situ through the reducibility of TA to obtain TA/Fe3+-TA/DETA-Ag/PVP-modified membrane. The optimized precursor layer was acquired by adjusting the buffer solution pH to 8, TA/Fe3+ ratio to 4 and the number of self-assembled layers to 5. The permeability testing results illustrated that the functional layer had an insignificant effect on the membrane transport parameters. The TA/Fe3+-TA/DETA-Ag/PVP-modified membrane simultaneously exhibited excellent physical and chemical stability. The coated membrane also demonstrated enhanced anti-bacterial properties, achieving 98.63 and 97.30% inhibition against Staphylococcus aureus and Escherichia coli, respectively. Furthermore, the dynamic fouling experiment showed a 12% higher water flux decrease for the TA/Fe3+-TA/DETA-Ag/PVP CTA membrane compared to the nascent CTA membrane, which proved its excellent antifouling performance. This work provides a feasible strategy to heighten the antifouling property of the CTA FO membrane.\",\"PeriodicalId\":298320,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"107 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究在市售三醋酸纤维素(CTA)正渗透(FO)膜的基础上开发了一种多功能膜层,以改善其防污性能。首先,单宁酸/铁离子(TA/Fe3+)复合物作为前驱层通过自组装被涂覆在膜表面。然后进一步涂覆单宁酸/二乙烯三胺(TA/DETA)亲水功能层,再通过 TA 的还原性在原位形成 Ag/聚乙烯吡咯烷酮(PVP)抗菌层,得到 TA/Fe3+-TA/DETA-Ag/PVP 改性膜。将缓冲溶液的 pH 值调至 8,TA/Fe3+ 的比例调至 4,自组装层数调至 5,得到了优化的前体层。渗透性测试结果表明,功能层对膜传输参数的影响不大。TA/Fe3+-TA/DETA-Ag/PVP 改性膜同时表现出优异的物理和化学稳定性。涂覆膜还具有更强的抗菌性能,对金黄色葡萄球菌和大肠杆菌的抑制率分别达到 98.63% 和 97.30%。此外,动态污垢实验显示,与新生 CTA 膜相比,TA/Fe3+-TA/DETA-Ag/PVP CTA 膜的水通量下降率高达 12%,这证明了其卓越的防污性能。这项工作为提高 CTA FO 膜的防污性能提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metal-phenolic network as precursor complex coating for forward osmosis membrane with enhanced antifouling property
In this study, a multi-functional layer was developed based on the commercially available cellulose triacetate (CTA) forward osmosis (FO) membrane to improve its antifouling properties. Tannic acid/ferric ion (TA/Fe3+) complexes were firstly coated as a precursor layer on the membrane surface via self-assembly. Afterwards, the tannic acid/diethylenetriamine (TA/DETA) hydrophilic functional layer was further coated, following Ag/polyvinylpyrrolidone (PVP) anti-bacterial layer was formed in situ through the reducibility of TA to obtain TA/Fe3+-TA/DETA-Ag/PVP-modified membrane. The optimized precursor layer was acquired by adjusting the buffer solution pH to 8, TA/Fe3+ ratio to 4 and the number of self-assembled layers to 5. The permeability testing results illustrated that the functional layer had an insignificant effect on the membrane transport parameters. The TA/Fe3+-TA/DETA-Ag/PVP-modified membrane simultaneously exhibited excellent physical and chemical stability. The coated membrane also demonstrated enhanced anti-bacterial properties, achieving 98.63 and 97.30% inhibition against Staphylococcus aureus and Escherichia coli, respectively. Furthermore, the dynamic fouling experiment showed a 12% higher water flux decrease for the TA/Fe3+-TA/DETA-Ag/PVP CTA membrane compared to the nascent CTA membrane, which proved its excellent antifouling performance. This work provides a feasible strategy to heighten the antifouling property of the CTA FO membrane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信