通过几何方法研究扰动 (1 + 1) 维分散长波方程中的行波解的分岔问题

Hang Zheng, Yonghui Xia
{"title":"通过几何方法研究扰动 (1 + 1) 维分散长波方程中的行波解的分岔问题","authors":"Hang Zheng, Yonghui Xia","doi":"10.1017/prm.2024.45","DOIUrl":null,"url":null,"abstract":"Choosing \n \n ${\\kappa }$\n \n \n (horizontal ordinate of the saddle point associated to the homoclinic orbit) as bifurcation parameter, bifurcations of the travelling wave solutions is studied in a perturbed \n \n $(1 + 1)$\n \n \n -dimensional dispersive long wave equation. The solitary wave solution exists at a suitable wave speed \n \n $c$\n \n \n for the bifurcation parameter \n \n ${\\kappa }\\in \\left (0,1-\\frac {\\sqrt 3}{3}\\right )\\cup \\left (1+\\frac {\\sqrt 3}{3},2\\right )$\n \n \n , while the kink and anti-kink wave solutions exist at a unique wave speed \n \n $c^*=\\sqrt {15}/3$\n \n \n for \n \n $\\kappa =0$\n \n \n or \n \n $\\kappa =2$\n \n \n . The methods are based on the geometric singular perturbation (GSP, for short) approach, Melnikov method and invariant manifolds theory. Interestingly, not only the explicit analytical expression of the complicated homoclinic Melnikov integral is directly obtained for the perturbed long wave equation, but also the explicit analytical expression of the limit wave speed is directly given. Numerical simulations are utilized to verify our mathematical results.","PeriodicalId":517305,"journal":{"name":"Proceedings of the Royal Society of Edinburgh: Section A Mathematics","volume":"32 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation of the travelling wave solutions in a perturbed (1 + 1)-dimensional dispersive long wave equation via a geometric approach\",\"authors\":\"Hang Zheng, Yonghui Xia\",\"doi\":\"10.1017/prm.2024.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Choosing \\n \\n ${\\\\kappa }$\\n \\n \\n (horizontal ordinate of the saddle point associated to the homoclinic orbit) as bifurcation parameter, bifurcations of the travelling wave solutions is studied in a perturbed \\n \\n $(1 + 1)$\\n \\n \\n -dimensional dispersive long wave equation. The solitary wave solution exists at a suitable wave speed \\n \\n $c$\\n \\n \\n for the bifurcation parameter \\n \\n ${\\\\kappa }\\\\in \\\\left (0,1-\\\\frac {\\\\sqrt 3}{3}\\\\right )\\\\cup \\\\left (1+\\\\frac {\\\\sqrt 3}{3},2\\\\right )$\\n \\n \\n , while the kink and anti-kink wave solutions exist at a unique wave speed \\n \\n $c^*=\\\\sqrt {15}/3$\\n \\n \\n for \\n \\n $\\\\kappa =0$\\n \\n \\n or \\n \\n $\\\\kappa =2$\\n \\n \\n . The methods are based on the geometric singular perturbation (GSP, for short) approach, Melnikov method and invariant manifolds theory. Interestingly, not only the explicit analytical expression of the complicated homoclinic Melnikov integral is directly obtained for the perturbed long wave equation, but also the explicit analytical expression of the limit wave speed is directly given. Numerical simulations are utilized to verify our mathematical results.\",\"PeriodicalId\":517305,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh: Section A Mathematics\",\"volume\":\"32 31\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh: Section A Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh: Section A Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/prm.2024.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

选择 ${\kappa }$(与同线轨道相关的鞍点的水平序线)作为分岔参数,研究了扰动 $(1 + 1)$ 二维色散长波方程中的行波解的分岔。在分岔参数 ${\kappa }\in \left (0,1-\frac {\sqrt 3}{3}\right )\cup \left (1+\frac {\sqrt 3}{3}、2}right )$ ,而当 $\kappa =0$ 或 $\kappa =2$ 时,扭结波和反扭结波的解以唯一的波速 $c^*=\sqrt {15}/3$ 存在。这些方法基于几何奇异扰动(简称 GSP)方法、梅尔尼科夫方法和不变流形理论。有趣的是,对于扰动长波方程,不仅直接得到了复杂同次梅利尼科夫积分的显式分析表达,而且直接给出了极限波速的显式分析表达。我们利用数值模拟来验证我们的数学结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation of the travelling wave solutions in a perturbed (1 + 1)-dimensional dispersive long wave equation via a geometric approach
Choosing ${\kappa }$ (horizontal ordinate of the saddle point associated to the homoclinic orbit) as bifurcation parameter, bifurcations of the travelling wave solutions is studied in a perturbed $(1 + 1)$ -dimensional dispersive long wave equation. The solitary wave solution exists at a suitable wave speed $c$ for the bifurcation parameter ${\kappa }\in \left (0,1-\frac {\sqrt 3}{3}\right )\cup \left (1+\frac {\sqrt 3}{3},2\right )$ , while the kink and anti-kink wave solutions exist at a unique wave speed $c^*=\sqrt {15}/3$ for $\kappa =0$ or $\kappa =2$ . The methods are based on the geometric singular perturbation (GSP, for short) approach, Melnikov method and invariant manifolds theory. Interestingly, not only the explicit analytical expression of the complicated homoclinic Melnikov integral is directly obtained for the perturbed long wave equation, but also the explicit analytical expression of the limit wave speed is directly given. Numerical simulations are utilized to verify our mathematical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信