有限单子局部环的完整分类

Axioms Pub Date : 2024-04-25 DOI:10.3390/axioms13050290
Sami Alabiad, Yousef Alkhamees
{"title":"有限单子局部环的完整分类","authors":"Sami Alabiad, Yousef Alkhamees","doi":"10.3390/axioms13050290","DOIUrl":null,"url":null,"abstract":"The main objective of this article is to classify all finite singleton local rings, which are associative rings characterized by a unique maximal ideal and a distinguished basis consisting of a single element. These rings are associated with four positive integer invariants p,n,s, and t, where p is a prime number. In particular, we aim to classify these rings and count them up to isomorphism while maintaining the same set of invariants. We have found interesting cases of finite singleton local rings with orders of p6 and p7 that hold substantial importance in the field of coding theory.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"42 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full Classification of Finite Singleton Local Rings\",\"authors\":\"Sami Alabiad, Yousef Alkhamees\",\"doi\":\"10.3390/axioms13050290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this article is to classify all finite singleton local rings, which are associative rings characterized by a unique maximal ideal and a distinguished basis consisting of a single element. These rings are associated with four positive integer invariants p,n,s, and t, where p is a prime number. In particular, we aim to classify these rings and count them up to isomorphism while maintaining the same set of invariants. We have found interesting cases of finite singleton local rings with orders of p6 and p7 that hold substantial importance in the field of coding theory.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"42 40\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13050290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是对所有有限单子局部环进行分类,这些关联环的特点是有唯一的最大理想和由单个元素组成的区分基。这些环与四个正整数不变式 p、n、s 和 t 相关联,其中 p 是素数。特别是,我们的目标是对这些环进行分类,并在保持同一组不变式的情况下对它们进行同构计数。我们发现了阶数为 p6 和 p7 的有限单子局部环的有趣案例,它们在编码理论领域具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full Classification of Finite Singleton Local Rings
The main objective of this article is to classify all finite singleton local rings, which are associative rings characterized by a unique maximal ideal and a distinguished basis consisting of a single element. These rings are associated with four positive integer invariants p,n,s, and t, where p is a prime number. In particular, we aim to classify these rings and count them up to isomorphism while maintaining the same set of invariants. We have found interesting cases of finite singleton local rings with orders of p6 and p7 that hold substantial importance in the field of coding theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信