与格罗斯-皮塔耶夫斯基方程有关的椭圆系统半节点解的存在性

IF 0.8 4区 数学 Q2 MATHEMATICS
Joao Pablo Pinheiro da Silva, Edcarlos Domingos da Silva
{"title":"与格罗斯-皮塔耶夫斯基方程有关的椭圆系统半节点解的存在性","authors":"Joao Pablo Pinheiro da Silva, Edcarlos Domingos da Silva","doi":"10.58997/ejde.2024.32","DOIUrl":null,"url":null,"abstract":"In this work we consider existence of semi-nodal solutions, i.e., solutions of the form \\((u, v)\\) with \\(u>0\\) and \\(v^\\pm:=\\max\\{0,\\pm v\\}\\not\\equiv0\\) for a class of elliptic systems related to the Gross-Pitaevskii equation. \nFor more information see https://ejde.math.txstate.edu/Volumes/2024/32/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of semi-nodal solutions for elliptic systems related to Gross-Pitaevskii equations\",\"authors\":\"Joao Pablo Pinheiro da Silva, Edcarlos Domingos da Silva\",\"doi\":\"10.58997/ejde.2024.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we consider existence of semi-nodal solutions, i.e., solutions of the form \\\\((u, v)\\\\) with \\\\(u>0\\\\) and \\\\(v^\\\\pm:=\\\\max\\\\{0,\\\\pm v\\\\}\\\\not\\\\equiv0\\\\) for a class of elliptic systems related to the Gross-Pitaevskii equation. \\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/32/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.32\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.32","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了与格罗斯-皮塔耶夫斯基方程相关的一类椭圆系统的半节点解的存在性,即具有(u>0)和(v^\pm:=\max\{0,\pm v\}\not\equiv\0 )形式的解((u, v)\)。更多信息见 https://ejde.math.txstate.edu/Volumes/2024/32/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of semi-nodal solutions for elliptic systems related to Gross-Pitaevskii equations
In this work we consider existence of semi-nodal solutions, i.e., solutions of the form \((u, v)\) with \(u>0\) and \(v^\pm:=\max\{0,\pm v\}\not\equiv0\) for a class of elliptic systems related to the Gross-Pitaevskii equation. For more information see https://ejde.math.txstate.edu/Volumes/2024/32/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信