通过 ClinGen 数据平台生成临床级基因-疾病有效性分类。

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
M. W. Wright, C. Thaxton, T. Nelson, Marina T. DiStefano, J. Savatt, Matthew H Brush, Gloria Cheung, Mark E. Mandell, Bryan Wulf, T. J. Ward, Scott Goehringer, Terry O'Neill, Phil Weller, C. Preston, Ingrid M Keseler, Jennifer L Goldstein, Natasha T Strande, Jennifer L McGlaughon, Danielle R Azzariti, Ineke Cordova, Hannah Dziadzio, Lawrence Babb, Kevin Riehle, A. Milosavljevic, Christa Lese Martin, Heidi L. Rehm, S. Plon, Jonathan S. Berg, E. Riggs, Teri E Klein
{"title":"通过 ClinGen 数据平台生成临床级基因-疾病有效性分类。","authors":"M. W. Wright, C. Thaxton, T. Nelson, Marina T. DiStefano, J. Savatt, Matthew H Brush, Gloria Cheung, Mark E. Mandell, Bryan Wulf, T. J. Ward, Scott Goehringer, Terry O'Neill, Phil Weller, C. Preston, Ingrid M Keseler, Jennifer L Goldstein, Natasha T Strande, Jennifer L McGlaughon, Danielle R Azzariti, Ineke Cordova, Hannah Dziadzio, Lawrence Babb, Kevin Riehle, A. Milosavljevic, Christa Lese Martin, Heidi L. Rehm, S. Plon, Jonathan S. Berg, E. Riggs, Teri E Klein","doi":"10.1146/annurev-biodatasci-102423-112456","DOIUrl":null,"url":null,"abstract":"Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Clinical-Grade Gene-Disease Validity Classifications Through the ClinGen Data Platforms.\",\"authors\":\"M. W. Wright, C. Thaxton, T. Nelson, Marina T. DiStefano, J. Savatt, Matthew H Brush, Gloria Cheung, Mark E. Mandell, Bryan Wulf, T. J. Ward, Scott Goehringer, Terry O'Neill, Phil Weller, C. Preston, Ingrid M Keseler, Jennifer L Goldstein, Natasha T Strande, Jennifer L McGlaughon, Danielle R Azzariti, Ineke Cordova, Hannah Dziadzio, Lawrence Babb, Kevin Riehle, A. Milosavljevic, Christa Lese Martin, Heidi L. Rehm, S. Plon, Jonathan S. Berg, E. Riggs, Teri E Klein\",\"doi\":\"10.1146/annurev-biodatasci-102423-112456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-102423-112456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-102423-112456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

临床基因实验室必须能够获取经过临床验证的生物医学数据,以实现精准医疗。由于缺乏可访问性、规范化结构和评估一致性,疾病因果关系的解释变得复杂,导致在评估用于诊断的基因和基因变异的临床有效性时出现混乱。临床基因组资源(ClinGen)的一个关键目标是填补有关支持基因在单基因疾病中作用的证据强度的知识空白,这一目标是通过一个称为 "基因-疾病有效性整理 "的过程来实现的。在此,我们回顾了 ClinGen 在开发整理基础设施方面所做的工作,该基础设施通过创建框架和使用通用数据标准,支持基因-疾病有效性数据的标准化、协调和传播。该基础设施基于多个应用程序,包括 ClinGen GeneTracker、Gene Curation Interface、Data Exchange、GeneGraph 和网站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Clinical-Grade Gene-Disease Validity Classifications Through the ClinGen Data Platforms.
Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信