通过应用 BiLSTM 和自注意机制预测蛋白质突变的功能变化

Q1 Decision Sciences
Zixuan Fan, Yan Xu
{"title":"通过应用 BiLSTM 和自注意机制预测蛋白质突变的功能变化","authors":"Zixuan Fan,&nbsp;Yan Xu","doi":"10.1007/s40745-024-00530-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the field of bioinformatics, changes in protein functionality are mainly influenced by protein mutations. Accurately predicting these functional changes can enhance our understanding of evolutionary mechanisms, promote developments in protein engineering-related fields, and accelerate progress in medical research. In this study, we introduced two different models: one based on bidirectional long short-term memory (BiLSTM), and the other based on self-attention. These models were integrated using a weighted fusion method to predict protein functional changes associated with mutation sites. The findings indicate that the model's predictive precision matches that of the current model, along with its capacity for generalization. Furthermore, the ensemble model surpasses the performance of the single models, highlighting the value of utilizing their synergistic capabilities. This finding may improve the accuracy of predicting protein functional changes associated with mutations and has potential applications in protein engineering and drug research. We evaluated the efficacy of our models under different scenarios by comparing the predicted results of protein functional changes across various numbers of mutation sites. As the number of mutation sites increases, the prediction accuracy decreases significantly, highlighting the inherent limitations of these models in handling cases involving more mutation sites.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Functional Changes in Protein Mutations Through the Application of BiLSTM and the Self-Attention Mechanism\",\"authors\":\"Zixuan Fan,&nbsp;Yan Xu\",\"doi\":\"10.1007/s40745-024-00530-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the field of bioinformatics, changes in protein functionality are mainly influenced by protein mutations. Accurately predicting these functional changes can enhance our understanding of evolutionary mechanisms, promote developments in protein engineering-related fields, and accelerate progress in medical research. In this study, we introduced two different models: one based on bidirectional long short-term memory (BiLSTM), and the other based on self-attention. These models were integrated using a weighted fusion method to predict protein functional changes associated with mutation sites. The findings indicate that the model's predictive precision matches that of the current model, along with its capacity for generalization. Furthermore, the ensemble model surpasses the performance of the single models, highlighting the value of utilizing their synergistic capabilities. This finding may improve the accuracy of predicting protein functional changes associated with mutations and has potential applications in protein engineering and drug research. We evaluated the efficacy of our models under different scenarios by comparing the predicted results of protein functional changes across various numbers of mutation sites. As the number of mutation sites increases, the prediction accuracy decreases significantly, highlighting the inherent limitations of these models in handling cases involving more mutation sites.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00530-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00530-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在生物信息学领域,蛋白质功能的变化主要受蛋白质突变的影响。准确预测这些功能变化可以加深我们对进化机制的理解,促进蛋白质工程相关领域的发展,并加快医学研究的进展。在这项研究中,我们引入了两种不同的模型:一种是基于双向长短期记忆(BiLSTM)的模型,另一种是基于自我注意的模型。使用加权融合法将这些模型整合在一起,预测与突变位点相关的蛋白质功能变化。研究结果表明,该模型的预测精度与当前模型相匹配,同时还具有泛化能力。此外,组合模型的性能还超过了单一模型,突出了利用其协同能力的价值。这一发现可能会提高预测与突变相关的蛋白质功能变化的准确性,并有可能应用于蛋白质工程和药物研究。我们通过比较不同突变位点数量下蛋白质功能变化的预测结果,评估了我们的模型在不同情况下的功效。随着突变位点数量的增加,预测准确率明显下降,这凸显出这些模型在处理涉及更多突变位点的情况时存在固有的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the Functional Changes in Protein Mutations Through the Application of BiLSTM and the Self-Attention Mechanism

In the field of bioinformatics, changes in protein functionality are mainly influenced by protein mutations. Accurately predicting these functional changes can enhance our understanding of evolutionary mechanisms, promote developments in protein engineering-related fields, and accelerate progress in medical research. In this study, we introduced two different models: one based on bidirectional long short-term memory (BiLSTM), and the other based on self-attention. These models were integrated using a weighted fusion method to predict protein functional changes associated with mutation sites. The findings indicate that the model's predictive precision matches that of the current model, along with its capacity for generalization. Furthermore, the ensemble model surpasses the performance of the single models, highlighting the value of utilizing their synergistic capabilities. This finding may improve the accuracy of predicting protein functional changes associated with mutations and has potential applications in protein engineering and drug research. We evaluated the efficacy of our models under different scenarios by comparing the predicted results of protein functional changes across various numbers of mutation sites. As the number of mutation sites increases, the prediction accuracy decreases significantly, highlighting the inherent limitations of these models in handling cases involving more mutation sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信