Yangcheng Huang, Mingjie Wang, Yi-Gang Li, Wenjie Cai
{"title":"检测心电图导联错位的轻量级深度学习方法。","authors":"Yangcheng Huang, Mingjie Wang, Yi-Gang Li, Wenjie Cai","doi":"10.1088/1361-6579/ad43ae","DOIUrl":null,"url":null,"abstract":"OBJECTIVE\nElectrocardiographic (ECG) lead misplacement can result in distorted waveforms and amplitudes, significantly impacting accurate interpretation. Although lead misplacement is a relatively low-probability event, with an incidence ranging from 0.4% to 4%, the large number of ECG records in clinical practice necessitates the development of an effective detection method. This paper aimed to address this gap by presenting a novel lead misplacement detection method based on deep learning models.\n\n\nAPPROACH\nWe developed two novel lightweight deep learning model for limb and chest lead misplacement detection, respectively. For limb lead misplacement detection, two limb leads and V6 were used as inputs, while for chest lead misplacement detection, six chest leads were used as inputs. Our models were trained and validated using the Chapman database, with an 8:2 train-validation split, and evaluated on the PTB-XL, PTB, and LUDB databases. Additionally, we examined the model interpretability on the LUDB databases. Limb lead misplacement simulations were performed using mathematical transformations, while chest lead misplacement scenarios were simulated by interchanging pairs of leads. The detection performance was assessed using metrics such as accuracy, precision, sensitivity, specificity, and Macro F1-score.\n\n\nMAIN RESULTS\nOur experiments simulated three scenarios of limb lead misplacement and nine scenarios of chest lead misplacement. The proposed two models achieved Macro F1-scores ranging from 93.42% to 99.61% on two heterogeneous test sets, demonstrating their effectiveness in accurately detecting lead misplacement across various arrhythmias.\n\n\nSIGNIFICANCE\nThe significance of this study lies in providing a reliable open-source algorithm for lead misplacement detection in ECG recordings. The source code is available at https://github.com/wjcai/ECG_lead_check.","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lightweight deep learning approach for detecting electrocardiographic lead misplacement.\",\"authors\":\"Yangcheng Huang, Mingjie Wang, Yi-Gang Li, Wenjie Cai\",\"doi\":\"10.1088/1361-6579/ad43ae\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVE\\nElectrocardiographic (ECG) lead misplacement can result in distorted waveforms and amplitudes, significantly impacting accurate interpretation. Although lead misplacement is a relatively low-probability event, with an incidence ranging from 0.4% to 4%, the large number of ECG records in clinical practice necessitates the development of an effective detection method. This paper aimed to address this gap by presenting a novel lead misplacement detection method based on deep learning models.\\n\\n\\nAPPROACH\\nWe developed two novel lightweight deep learning model for limb and chest lead misplacement detection, respectively. For limb lead misplacement detection, two limb leads and V6 were used as inputs, while for chest lead misplacement detection, six chest leads were used as inputs. Our models were trained and validated using the Chapman database, with an 8:2 train-validation split, and evaluated on the PTB-XL, PTB, and LUDB databases. Additionally, we examined the model interpretability on the LUDB databases. Limb lead misplacement simulations were performed using mathematical transformations, while chest lead misplacement scenarios were simulated by interchanging pairs of leads. The detection performance was assessed using metrics such as accuracy, precision, sensitivity, specificity, and Macro F1-score.\\n\\n\\nMAIN RESULTS\\nOur experiments simulated three scenarios of limb lead misplacement and nine scenarios of chest lead misplacement. The proposed two models achieved Macro F1-scores ranging from 93.42% to 99.61% on two heterogeneous test sets, demonstrating their effectiveness in accurately detecting lead misplacement across various arrhythmias.\\n\\n\\nSIGNIFICANCE\\nThe significance of this study lies in providing a reliable open-source algorithm for lead misplacement detection in ECG recordings. The source code is available at https://github.com/wjcai/ECG_lead_check.\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad43ae\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad43ae","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
A lightweight deep learning approach for detecting electrocardiographic lead misplacement.
OBJECTIVE
Electrocardiographic (ECG) lead misplacement can result in distorted waveforms and amplitudes, significantly impacting accurate interpretation. Although lead misplacement is a relatively low-probability event, with an incidence ranging from 0.4% to 4%, the large number of ECG records in clinical practice necessitates the development of an effective detection method. This paper aimed to address this gap by presenting a novel lead misplacement detection method based on deep learning models.
APPROACH
We developed two novel lightweight deep learning model for limb and chest lead misplacement detection, respectively. For limb lead misplacement detection, two limb leads and V6 were used as inputs, while for chest lead misplacement detection, six chest leads were used as inputs. Our models were trained and validated using the Chapman database, with an 8:2 train-validation split, and evaluated on the PTB-XL, PTB, and LUDB databases. Additionally, we examined the model interpretability on the LUDB databases. Limb lead misplacement simulations were performed using mathematical transformations, while chest lead misplacement scenarios were simulated by interchanging pairs of leads. The detection performance was assessed using metrics such as accuracy, precision, sensitivity, specificity, and Macro F1-score.
MAIN RESULTS
Our experiments simulated three scenarios of limb lead misplacement and nine scenarios of chest lead misplacement. The proposed two models achieved Macro F1-scores ranging from 93.42% to 99.61% on two heterogeneous test sets, demonstrating their effectiveness in accurately detecting lead misplacement across various arrhythmias.
SIGNIFICANCE
The significance of this study lies in providing a reliable open-source algorithm for lead misplacement detection in ECG recordings. The source code is available at https://github.com/wjcai/ECG_lead_check.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.