一种非线性四阶积分微分方程的单调迭代技术及其应用

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Yan Wang, Jinxiang Wang, Xiaobin Yao
{"title":"一种非线性四阶积分微分方程的单调迭代技术及其应用","authors":"Yan Wang, Jinxiang Wang, Xiaobin Yao","doi":"10.1155/2024/8847784","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the existence and iterative approximation of solutions for a class of nonlinear fourth-order integro-differential equations (IDEs) with Navier boundary conditions. We first prove the existence and uniqueness of analytical solutions for a linear fourth-order IDE, which has rich applications in engineering and physics, and then we establish a maximum principle for the corresponding operator. Based upon the maximum principle, we develop a monotone iterative technique in the presence of lower and upper solutions to obtain iterative solutions for the nonlocal nonlinear problem under certain conditions. Some examples are presented to illustrate the main results.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotone Iterative Technique for a Kind of Nonlinear Fourth-Order Integro-Differential Equations and Its Application\",\"authors\":\"Yan Wang, Jinxiang Wang, Xiaobin Yao\",\"doi\":\"10.1155/2024/8847784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the existence and iterative approximation of solutions for a class of nonlinear fourth-order integro-differential equations (IDEs) with Navier boundary conditions. We first prove the existence and uniqueness of analytical solutions for a linear fourth-order IDE, which has rich applications in engineering and physics, and then we establish a maximum principle for the corresponding operator. Based upon the maximum principle, we develop a monotone iterative technique in the presence of lower and upper solutions to obtain iterative solutions for the nonlocal nonlinear problem under certain conditions. Some examples are presented to illustrate the main results.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8847784\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2024/8847784","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一类具有纳维边界条件的非线性四阶积分微分方程(IDE)解的存在性和迭代逼近问题。我们首先证明了线性四阶积分微分方程解析解的存在性和唯一性,该方程在工程学和物理学中有着丰富的应用,然后我们建立了相应算子的最大值原理。根据最大值原理,我们开发了一种存在下解和上解的单调迭代技术,从而在一定条件下获得非局部非线性问题的迭代解。本文列举了一些例子来说明主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotone Iterative Technique for a Kind of Nonlinear Fourth-Order Integro-Differential Equations and Its Application
In this paper, we consider the existence and iterative approximation of solutions for a class of nonlinear fourth-order integro-differential equations (IDEs) with Navier boundary conditions. We first prove the existence and uniqueness of analytical solutions for a linear fourth-order IDE, which has rich applications in engineering and physics, and then we establish a maximum principle for the corresponding operator. Based upon the maximum principle, we develop a monotone iterative technique in the presence of lower and upper solutions to obtain iterative solutions for the nonlocal nonlinear problem under certain conditions. Some examples are presented to illustrate the main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信