Vikash Gautam, A. Patnaik, Inder K. Bhat, V. Kukshal, M. Pawar, Ashiwani Kumar
{"title":"优化单层/多层花岗岩填充铝合金复合材料的物理机械性能和侵蚀磨损性能","authors":"Vikash Gautam, A. Patnaik, Inder K. Bhat, V. Kukshal, M. Pawar, Ashiwani Kumar","doi":"10.1515/ijmr-2023-0041","DOIUrl":null,"url":null,"abstract":"\n In the present research, uncoated and coated (CrN/SiN–CrN) granite dust reinforced aluminum alloy (AA 1050, AA 5083) composites samples were fabricated using stir casting and their physical, mechanical and slurry erosion behavior were assessed. The study reveal a persistent increase in void content, hardness, impact strength and stress intensity factor for both uncoated and coated alloy with the inclusion of reinforcement. In contrast, flexural strength and corrosion rate decrease continuously with increased granite content and also with the corresponding coating. Multilayer coated 5083 aluminum alloy composite with 6 wt.% granite particle shows maximum hardness, impact strength and stress intensity factor and minimum slurry erosion rate. The entropy method was applied to the operating parameter to rank the fabricated composites. The performance of each operating parameter is determined using the VIKOR (Vise Kriterijumska Optimizacija Kompromisno Resenje) optimization method. The optimal formulation based on Performance-Defining Attributes (PDAs) is observed for multilayer-coated 6 wt.% granite particulate reinforced 5083 aluminum alloy composites.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites\",\"authors\":\"Vikash Gautam, A. Patnaik, Inder K. Bhat, V. Kukshal, M. Pawar, Ashiwani Kumar\",\"doi\":\"10.1515/ijmr-2023-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the present research, uncoated and coated (CrN/SiN–CrN) granite dust reinforced aluminum alloy (AA 1050, AA 5083) composites samples were fabricated using stir casting and their physical, mechanical and slurry erosion behavior were assessed. The study reveal a persistent increase in void content, hardness, impact strength and stress intensity factor for both uncoated and coated alloy with the inclusion of reinforcement. In contrast, flexural strength and corrosion rate decrease continuously with increased granite content and also with the corresponding coating. Multilayer coated 5083 aluminum alloy composite with 6 wt.% granite particle shows maximum hardness, impact strength and stress intensity factor and minimum slurry erosion rate. The entropy method was applied to the operating parameter to rank the fabricated composites. The performance of each operating parameter is determined using the VIKOR (Vise Kriterijumska Optimizacija Kompromisno Resenje) optimization method. The optimal formulation based on Performance-Defining Attributes (PDAs) is observed for multilayer-coated 6 wt.% granite particulate reinforced 5083 aluminum alloy composites.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/ijmr-2023-0041\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ijmr-2023-0041","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites
In the present research, uncoated and coated (CrN/SiN–CrN) granite dust reinforced aluminum alloy (AA 1050, AA 5083) composites samples were fabricated using stir casting and their physical, mechanical and slurry erosion behavior were assessed. The study reveal a persistent increase in void content, hardness, impact strength and stress intensity factor for both uncoated and coated alloy with the inclusion of reinforcement. In contrast, flexural strength and corrosion rate decrease continuously with increased granite content and also with the corresponding coating. Multilayer coated 5083 aluminum alloy composite with 6 wt.% granite particle shows maximum hardness, impact strength and stress intensity factor and minimum slurry erosion rate. The entropy method was applied to the operating parameter to rank the fabricated composites. The performance of each operating parameter is determined using the VIKOR (Vise Kriterijumska Optimizacija Kompromisno Resenje) optimization method. The optimal formulation based on Performance-Defining Attributes (PDAs) is observed for multilayer-coated 6 wt.% granite particulate reinforced 5083 aluminum alloy composites.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.