BrepMFR:通过深度学习和领域适应增强 B-rep 模型的加工特征识别能力

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Shuming Zhang , Zhidong Guan , Hao Jiang , Xiaodong Wang , Pingan Tan
{"title":"BrepMFR:通过深度学习和领域适应增强 B-rep 模型的加工特征识别能力","authors":"Shuming Zhang ,&nbsp;Zhidong Guan ,&nbsp;Hao Jiang ,&nbsp;Xiaodong Wang ,&nbsp;Pingan Tan","doi":"10.1016/j.cagd.2024.102318","DOIUrl":null,"url":null,"abstract":"<div><p>Feature Recognition (FR) plays a crucial role in modern digital manufacturing, serving as a key technology for integrating Computer-Aided Design (CAD), Computer-Aided Process Planning (CAPP) and Computer-Aided Manufacturing (CAM) systems. The emergence of deep learning methods in recent years offers a new approach to address challenges in recognizing highly intersecting features with complex geometric shapes. However, due to the high cost of labeling real CAD models, neural networks are usually trained on computer-synthesized datasets, resulting in noticeable performance degradation when applied to real-world CAD models. Therefore, we propose a novel deep learning network, BrepMFR, designed for Machining Feature Recognition (MFR) from Boundary Representation (B-rep) models. We transform the original B-rep model into a graph representation as network-friendly input, incorporating local geometric shape and global topological relationships. Leveraging a graph neural network based on Transformer architecture and graph attention mechanism, we extract the feature representation of high-level semantic information to achieve machining feature recognition. Additionally, employing a two-step training strategy under a transfer learning framework, we enhance BrepMFR's generalization ability by adapting synthetic training data to real CAD data. Furthermore, we establish a large-scale synthetic CAD model dataset inclusive of 24 typical machining features, showcasing diversity in geometry that closely mirrors real-world mechanical engineering scenarios. Extensive experiments across various datasets demonstrate that BrepMFR achieves state-of-the-art machining feature recognition accuracy and performs effectively on CAD models of real-world mechanical parts.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102318"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BrepMFR: Enhancing machining feature recognition in B-rep models through deep learning and domain adaptation\",\"authors\":\"Shuming Zhang ,&nbsp;Zhidong Guan ,&nbsp;Hao Jiang ,&nbsp;Xiaodong Wang ,&nbsp;Pingan Tan\",\"doi\":\"10.1016/j.cagd.2024.102318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Feature Recognition (FR) plays a crucial role in modern digital manufacturing, serving as a key technology for integrating Computer-Aided Design (CAD), Computer-Aided Process Planning (CAPP) and Computer-Aided Manufacturing (CAM) systems. The emergence of deep learning methods in recent years offers a new approach to address challenges in recognizing highly intersecting features with complex geometric shapes. However, due to the high cost of labeling real CAD models, neural networks are usually trained on computer-synthesized datasets, resulting in noticeable performance degradation when applied to real-world CAD models. Therefore, we propose a novel deep learning network, BrepMFR, designed for Machining Feature Recognition (MFR) from Boundary Representation (B-rep) models. We transform the original B-rep model into a graph representation as network-friendly input, incorporating local geometric shape and global topological relationships. Leveraging a graph neural network based on Transformer architecture and graph attention mechanism, we extract the feature representation of high-level semantic information to achieve machining feature recognition. Additionally, employing a two-step training strategy under a transfer learning framework, we enhance BrepMFR's generalization ability by adapting synthetic training data to real CAD data. Furthermore, we establish a large-scale synthetic CAD model dataset inclusive of 24 typical machining features, showcasing diversity in geometry that closely mirrors real-world mechanical engineering scenarios. Extensive experiments across various datasets demonstrate that BrepMFR achieves state-of-the-art machining feature recognition accuracy and performs effectively on CAD models of real-world mechanical parts.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"111 \",\"pages\":\"Article 102318\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624000529\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000529","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

特征识别(FR)在现代数字化制造中发挥着至关重要的作用,是集成计算机辅助设计(CAD)、计算机辅助工艺规划(CAPP)和计算机辅助制造(CAM)系统的关键技术。近年来出现的深度学习方法为解决复杂几何形状的高度交叉特征识别难题提供了一种新方法。然而,由于标注真实 CAD 模型的成本较高,神经网络通常在计算机合成的数据集上进行训练,因此当应用于真实世界的 CAD 模型时,性能会明显下降。因此,我们提出了一种新颖的深度学习网络 BrepMFR,旨在通过边界表示(B-rep)模型进行加工特征识别(MFR)。我们将原始 B-rep 模型转化为图形表示,作为网络友好的输入,其中包含局部几何形状和全局拓扑关系。利用基于 Transformer 架构和图注意机制的图神经网络,我们提取了高级语义信息的特征表示,从而实现了加工特征识别。此外,我们采用迁移学习框架下的两步训练策略,将合成训练数据与真实 CAD 数据进行适配,从而增强了 BrepMFR 的泛化能力。此外,我们还建立了一个包含 24 个典型加工特征的大规模合成 CAD 模型数据集,展示了与真实世界机械工程场景密切相关的几何图形多样性。在各种数据集上进行的广泛实验证明,BrepMFR 实现了最先进的加工特征识别精度,并能在真实世界的机械零件 CAD 模型上有效执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BrepMFR: Enhancing machining feature recognition in B-rep models through deep learning and domain adaptation

Feature Recognition (FR) plays a crucial role in modern digital manufacturing, serving as a key technology for integrating Computer-Aided Design (CAD), Computer-Aided Process Planning (CAPP) and Computer-Aided Manufacturing (CAM) systems. The emergence of deep learning methods in recent years offers a new approach to address challenges in recognizing highly intersecting features with complex geometric shapes. However, due to the high cost of labeling real CAD models, neural networks are usually trained on computer-synthesized datasets, resulting in noticeable performance degradation when applied to real-world CAD models. Therefore, we propose a novel deep learning network, BrepMFR, designed for Machining Feature Recognition (MFR) from Boundary Representation (B-rep) models. We transform the original B-rep model into a graph representation as network-friendly input, incorporating local geometric shape and global topological relationships. Leveraging a graph neural network based on Transformer architecture and graph attention mechanism, we extract the feature representation of high-level semantic information to achieve machining feature recognition. Additionally, employing a two-step training strategy under a transfer learning framework, we enhance BrepMFR's generalization ability by adapting synthetic training data to real CAD data. Furthermore, we establish a large-scale synthetic CAD model dataset inclusive of 24 typical machining features, showcasing diversity in geometry that closely mirrors real-world mechanical engineering scenarios. Extensive experiments across various datasets demonstrate that BrepMFR achieves state-of-the-art machining feature recognition accuracy and performs effectively on CAD models of real-world mechanical parts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Aided Geometric Design
Computer Aided Geometric Design 工程技术-计算机:软件工程
CiteScore
3.50
自引率
13.30%
发文量
57
审稿时长
60 days
期刊介绍: The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following: -Mathematical and Geometric Foundations- Curve, Surface, and Volume generation- CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision- Industrial, medical, and scientific applications. The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信