{"title":"STTMC: 少量时空传导调制分类器","authors":"Yunhao Shi;Hua Xu;Zisen Qi;Yue Zhang;Dan Wang;Lei Jiang","doi":"10.1109/TMLCN.2024.3387430","DOIUrl":null,"url":null,"abstract":"The advancement of deep learning (DL) techniques has led to significant progress in Automatic Modulation Classification (AMC). However, most existing DL-based AMC methods require massive training samples, which are difficult to obtain in non-cooperative scenarios. The identification of modulation types under small sample conditions has become an increasingly urgent problem. In this paper, we present a novel few-shot AMC model named the Spatial Temporal Transductive Modulation Classifier (STTMC), which comprises two modules: a feature extraction module and a graph network module. The former is responsible for extracting diverse features through a spatiotemporal parallel network, while the latter facilitates transductive decision-making through a graph network that uses a closed-form solution. Notably, STTMC classifies a group of test signals simultaneously to increase stability of few-shot model with an episode training strategy. Experimental results on the RadioML.2018.01A and RadioML.2016.10A datasets demonstrate that the proposed method perform well in 3way-Kshot, 5way-Kshot and 10way-Kshot configurations. In particular, STTMC outperforms other existing AMC methods by a large margin.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"546-559"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10497130","citationCount":"0","resultStr":"{\"title\":\"STTMC: A Few-Shot Spatial Temporal Transductive Modulation Classifier\",\"authors\":\"Yunhao Shi;Hua Xu;Zisen Qi;Yue Zhang;Dan Wang;Lei Jiang\",\"doi\":\"10.1109/TMLCN.2024.3387430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of deep learning (DL) techniques has led to significant progress in Automatic Modulation Classification (AMC). However, most existing DL-based AMC methods require massive training samples, which are difficult to obtain in non-cooperative scenarios. The identification of modulation types under small sample conditions has become an increasingly urgent problem. In this paper, we present a novel few-shot AMC model named the Spatial Temporal Transductive Modulation Classifier (STTMC), which comprises two modules: a feature extraction module and a graph network module. The former is responsible for extracting diverse features through a spatiotemporal parallel network, while the latter facilitates transductive decision-making through a graph network that uses a closed-form solution. Notably, STTMC classifies a group of test signals simultaneously to increase stability of few-shot model with an episode training strategy. Experimental results on the RadioML.2018.01A and RadioML.2016.10A datasets demonstrate that the proposed method perform well in 3way-Kshot, 5way-Kshot and 10way-Kshot configurations. In particular, STTMC outperforms other existing AMC methods by a large margin.\",\"PeriodicalId\":100641,\"journal\":{\"name\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"volume\":\"2 \",\"pages\":\"546-559\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10497130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10497130/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10497130/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
STTMC: A Few-Shot Spatial Temporal Transductive Modulation Classifier
The advancement of deep learning (DL) techniques has led to significant progress in Automatic Modulation Classification (AMC). However, most existing DL-based AMC methods require massive training samples, which are difficult to obtain in non-cooperative scenarios. The identification of modulation types under small sample conditions has become an increasingly urgent problem. In this paper, we present a novel few-shot AMC model named the Spatial Temporal Transductive Modulation Classifier (STTMC), which comprises two modules: a feature extraction module and a graph network module. The former is responsible for extracting diverse features through a spatiotemporal parallel network, while the latter facilitates transductive decision-making through a graph network that uses a closed-form solution. Notably, STTMC classifies a group of test signals simultaneously to increase stability of few-shot model with an episode training strategy. Experimental results on the RadioML.2018.01A and RadioML.2016.10A datasets demonstrate that the proposed method perform well in 3way-Kshot, 5way-Kshot and 10way-Kshot configurations. In particular, STTMC outperforms other existing AMC methods by a large margin.