利用 PINN-Adam 重启策略数值求解海龟种群动态模型

IF 1.4 Q2 MATHEMATICS, APPLIED
Danang A. Pratama , Maharani A. Bakar , Ummu Atiqah Mohd Roslan , Sugiyarto Surono , A. Salhi
{"title":"利用 PINN-Adam 重启策略数值求解海龟种群动态模型","authors":"Danang A. Pratama ,&nbsp;Maharani A. Bakar ,&nbsp;Ummu Atiqah Mohd Roslan ,&nbsp;Sugiyarto Surono ,&nbsp;A. Salhi","doi":"10.1016/j.rinam.2024.100457","DOIUrl":null,"url":null,"abstract":"<div><p>The Lotka–Volterra predator–prey system for dynamic sea turtle population is solved using r-PINN-Adam method, a novel approach which combines Physics-Informed Neural Network (PINN) with restarting strategy. This method allows us to monitor the loss function values of PINN such that when there is no progress made, we stop the process and pick a good value to be used in the next process. Subsequently, the training time decreases and the accuracy increases. The numerical solutions are compared to the popular Runge–Kutta method in terms of correctness which presented graphically. Simulation results also displayed in terms of trainable parameters and optimal loss function performance. The research highlights the robustness and superiority of the proposed method, positioning it as a valuable tool for sea turtle conservation efforts.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100457"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259003742400027X/pdfft?md5=4aa0b3ca96f914efc74198fb3ea5def7&pid=1-s2.0-S259003742400027X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical solutions of sea turtle population dynamics model by using restarting strategy of PINN-Adam\",\"authors\":\"Danang A. Pratama ,&nbsp;Maharani A. Bakar ,&nbsp;Ummu Atiqah Mohd Roslan ,&nbsp;Sugiyarto Surono ,&nbsp;A. Salhi\",\"doi\":\"10.1016/j.rinam.2024.100457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Lotka–Volterra predator–prey system for dynamic sea turtle population is solved using r-PINN-Adam method, a novel approach which combines Physics-Informed Neural Network (PINN) with restarting strategy. This method allows us to monitor the loss function values of PINN such that when there is no progress made, we stop the process and pick a good value to be used in the next process. Subsequently, the training time decreases and the accuracy increases. The numerical solutions are compared to the popular Runge–Kutta method in terms of correctness which presented graphically. Simulation results also displayed in terms of trainable parameters and optimal loss function performance. The research highlights the robustness and superiority of the proposed method, positioning it as a valuable tool for sea turtle conservation efforts.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"22 \",\"pages\":\"Article 100457\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259003742400027X/pdfft?md5=4aa0b3ca96f914efc74198fb3ea5def7&pid=1-s2.0-S259003742400027X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259003742400027X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742400027X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

利用 r-PINN-Adam 方法求解了动态海龟种群的 Lotka-Volterra 捕食者-猎物系统,这是一种将物理信息神经网络(PINN)与重启策略相结合的新方法。通过这种方法,我们可以监控 PINN 的损失函数值,当没有进展时,我们就会停止进程,并选择一个好的值用于下一个进程。这样,训练时间就会减少,精度也会提高。数值解法与常用的 Runge-Kutta 方法在正确性方面进行了比较,并以图表形式展示。仿真结果还显示了可训练参数和最佳损失函数性能。这项研究凸显了拟议方法的稳健性和优越性,并将其定位为海龟保护工作的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solutions of sea turtle population dynamics model by using restarting strategy of PINN-Adam

The Lotka–Volterra predator–prey system for dynamic sea turtle population is solved using r-PINN-Adam method, a novel approach which combines Physics-Informed Neural Network (PINN) with restarting strategy. This method allows us to monitor the loss function values of PINN such that when there is no progress made, we stop the process and pick a good value to be used in the next process. Subsequently, the training time decreases and the accuracy increases. The numerical solutions are compared to the popular Runge–Kutta method in terms of correctness which presented graphically. Simulation results also displayed in terms of trainable parameters and optimal loss function performance. The research highlights the robustness and superiority of the proposed method, positioning it as a valuable tool for sea turtle conservation efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信