{"title":"神经网络的熵正则化:自相似近似","authors":"Amir R. Asadi, Po-Ling Loh","doi":"10.1016/j.jspi.2024.106181","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on entropic regularization and its multiscale extension in neural network learning. We leverage established results that characterize the optimizer of entropic regularization methods and their connection with generalization bounds. To avoid the significant computational complexity involved in sampling from the optimal multiscale Gibbs distributions, we describe how to make measured concessions in optimality by using self-similar approximating distributions. We study such scale-invariant approximations for linear neural networks and further extend the approximations to neural networks with nonlinear activation functions. We then illustrate the application of our proposed approach through empirical simulation. By navigating the interplay between optimization and computational efficiency, our research contributes to entropic regularization theory, proposing a practical method that embraces symmetry across scales.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106181"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000387/pdfft?md5=fcc1f48fea9b9d957df56a1c168f3f74&pid=1-s2.0-S0378375824000387-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Entropic regularization of neural networks: Self-similar approximations\",\"authors\":\"Amir R. Asadi, Po-Ling Loh\",\"doi\":\"10.1016/j.jspi.2024.106181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper focuses on entropic regularization and its multiscale extension in neural network learning. We leverage established results that characterize the optimizer of entropic regularization methods and their connection with generalization bounds. To avoid the significant computational complexity involved in sampling from the optimal multiscale Gibbs distributions, we describe how to make measured concessions in optimality by using self-similar approximating distributions. We study such scale-invariant approximations for linear neural networks and further extend the approximations to neural networks with nonlinear activation functions. We then illustrate the application of our proposed approach through empirical simulation. By navigating the interplay between optimization and computational efficiency, our research contributes to entropic regularization theory, proposing a practical method that embraces symmetry across scales.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"233 \",\"pages\":\"Article 106181\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000387/pdfft?md5=fcc1f48fea9b9d957df56a1c168f3f74&pid=1-s2.0-S0378375824000387-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000387\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000387","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Entropic regularization of neural networks: Self-similar approximations
This paper focuses on entropic regularization and its multiscale extension in neural network learning. We leverage established results that characterize the optimizer of entropic regularization methods and their connection with generalization bounds. To avoid the significant computational complexity involved in sampling from the optimal multiscale Gibbs distributions, we describe how to make measured concessions in optimality by using self-similar approximating distributions. We study such scale-invariant approximations for linear neural networks and further extend the approximations to neural networks with nonlinear activation functions. We then illustrate the application of our proposed approach through empirical simulation. By navigating the interplay between optimization and computational efficiency, our research contributes to entropic regularization theory, proposing a practical method that embraces symmetry across scales.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.