为预测分析建立一个废气数据扩展框架:实证方法

Q1 Economics, Econometrics and Finance
Daniel E. O'Leary
{"title":"为预测分析建立一个废气数据扩展框架:实证方法","authors":"Daniel E. O'Leary","doi":"10.1002/isaf.1554","DOIUrl":null,"url":null,"abstract":"<p>We investigate applying and extending an exhaust data framework, using an empirical analysis to explore and compare different predictive analytic capabilities of both internal and external exhaust data for estimating sales. We use internal exhaust data that explores the relationship between app usage and web traffic data and estimation of sales and find the ability to predict sales at least 4 days ahead. We also develop predictive models of sales, using external data of Google searches, extending the previous research to include additional macroeconomic Google variables and Wikipedia pageviews, finding that we can predict at least 4 months ahead, suggesting a portfolio of exhaust data be used. We introduce the roles of internal and external exhaust data, direct and indirect exhaust data and transformed exhaust data, into an exhaust data framework. We examine what appear to be different levels of information fineness and predictability from those exhaust data sources. We also note the importance of the types of devices (e.g., mobile) and the types of commerce (e.g., mobile commerce) in creating and finding different types of exhaust. Finally, we apply an existing exhaust data framework to develop macroeconomic data exhaust variables, as the means of capturing inflation and unemployment information, using Google searches.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"31 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1554","citationCount":"0","resultStr":"{\"title\":\"Toward an extended framework of exhaust data for predictive analytics: An empirical approach\",\"authors\":\"Daniel E. O'Leary\",\"doi\":\"10.1002/isaf.1554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate applying and extending an exhaust data framework, using an empirical analysis to explore and compare different predictive analytic capabilities of both internal and external exhaust data for estimating sales. We use internal exhaust data that explores the relationship between app usage and web traffic data and estimation of sales and find the ability to predict sales at least 4 days ahead. We also develop predictive models of sales, using external data of Google searches, extending the previous research to include additional macroeconomic Google variables and Wikipedia pageviews, finding that we can predict at least 4 months ahead, suggesting a portfolio of exhaust data be used. We introduce the roles of internal and external exhaust data, direct and indirect exhaust data and transformed exhaust data, into an exhaust data framework. We examine what appear to be different levels of information fineness and predictability from those exhaust data sources. We also note the importance of the types of devices (e.g., mobile) and the types of commerce (e.g., mobile commerce) in creating and finding different types of exhaust. Finally, we apply an existing exhaust data framework to develop macroeconomic data exhaust variables, as the means of capturing inflation and unemployment information, using Google searches.</p>\",\"PeriodicalId\":53473,\"journal\":{\"name\":\"Intelligent Systems in Accounting, Finance and Management\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1554\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems in Accounting, Finance and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了排气数据框架的应用和扩展,通过实证分析来探索和比较内部和外部排气数据在估计销售额方面的不同预测分析能力。我们使用内部排气数据,探索应用程序使用和网络流量数据与销售额估算之间的关系,发现至少可以提前 4 天预测销售额。我们还利用谷歌搜索的外部数据开发了销售额预测模型,并将之前的研究扩展到谷歌的其他宏观经济变量和维基百科的页面浏览量,发现我们至少可以提前 4 个月预测销售额,建议使用排气数据组合。我们在排气数据框架中引入了内部和外部排气数据、直接和间接排气数据以及转换后的排气数据。我们研究了这些废气数据来源的信息精细度和可预测性的不同水平。我们还注意到设备类型(如移动设备)和商务类型(如移动商务)在创建和发现不同类型废气方面的重要性。最后,我们应用现有的排气数据框架来开发宏观经济数据排气变量,作为利用谷歌搜索捕捉通货膨胀和失业信息的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward an extended framework of exhaust data for predictive analytics: An empirical approach

Toward an extended framework of exhaust data for predictive analytics: An empirical approach

We investigate applying and extending an exhaust data framework, using an empirical analysis to explore and compare different predictive analytic capabilities of both internal and external exhaust data for estimating sales. We use internal exhaust data that explores the relationship between app usage and web traffic data and estimation of sales and find the ability to predict sales at least 4 days ahead. We also develop predictive models of sales, using external data of Google searches, extending the previous research to include additional macroeconomic Google variables and Wikipedia pageviews, finding that we can predict at least 4 months ahead, suggesting a portfolio of exhaust data be used. We introduce the roles of internal and external exhaust data, direct and indirect exhaust data and transformed exhaust data, into an exhaust data framework. We examine what appear to be different levels of information fineness and predictability from those exhaust data sources. We also note the importance of the types of devices (e.g., mobile) and the types of commerce (e.g., mobile commerce) in creating and finding different types of exhaust. Finally, we apply an existing exhaust data framework to develop macroeconomic data exhaust variables, as the means of capturing inflation and unemployment information, using Google searches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligent Systems in Accounting, Finance and Management
Intelligent Systems in Accounting, Finance and Management Economics, Econometrics and Finance-Finance
CiteScore
6.00
自引率
0.00%
发文量
0
期刊介绍: Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信