利用增强型硅学框架大规模验证 46 种入侵物种检测方法

Q1 Agricultural and Biological Sciences
Environmental DNA Pub Date : 2024-04-24 DOI:10.1002/edn3.548
John A. Kronenberger, Taylor M. Wilcox, Michael K. Young, Daniel H. Mason, Thomas W. Franklin, Michael K. Schwartz
{"title":"利用增强型硅学框架大规模验证 46 种入侵物种检测方法","authors":"John A. Kronenberger,&nbsp;Taylor M. Wilcox,&nbsp;Michael K. Young,&nbsp;Daniel H. Mason,&nbsp;Thomas W. Franklin,&nbsp;Michael K. Schwartz","doi":"10.1002/edn3.548","DOIUrl":null,"url":null,"abstract":"<p>The need for widespread occurrence data to inform species conservation has prompted interest in large, national-scale environmental DNA (eDNA) monitoring strategies. However, targeted eDNA assays are seldom validated for use across broad geographic areas. Here, we validated 46 new and previously published probe-based qPCR assays targeting invasive species throughout the continental United States. We drew upon current taxonomies, range maps, publicly available sequences, and tissue archives to evaluate all potentially sympatric confamilial species and genetically similar extrafamilial taxa. Out of 5276 unique assay-nontarget taxon combinations, we were able to test 4206 (80%). We characterized levels of validation and specificity for each of eight federal geographic regions and provided an online tool with state-level information, as well as detailed assay descriptions in an appendix. Specificity testing benefited from extensive use of <i>eDNAssay</i>—a machine learning classifier trained to predict qPCR cross-amplification—which we found to be 96% accurate in 649 unique tests that underwent paired in silico and in vitro testing. Predictions of assay specificity (the true negative rate) were 98–100% accurate, depending on the classification threshold used. This work provides both an immediate resource for invasive species surveillance and demonstrates an enhanced in silico, geographically subdivided validation framework to aid in future large-scale validation efforts.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.548","citationCount":"0","resultStr":"{\"title\":\"Large-scale validation of 46 invasive species assays using an enhanced in silico framework\",\"authors\":\"John A. Kronenberger,&nbsp;Taylor M. Wilcox,&nbsp;Michael K. Young,&nbsp;Daniel H. Mason,&nbsp;Thomas W. Franklin,&nbsp;Michael K. Schwartz\",\"doi\":\"10.1002/edn3.548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The need for widespread occurrence data to inform species conservation has prompted interest in large, national-scale environmental DNA (eDNA) monitoring strategies. However, targeted eDNA assays are seldom validated for use across broad geographic areas. Here, we validated 46 new and previously published probe-based qPCR assays targeting invasive species throughout the continental United States. We drew upon current taxonomies, range maps, publicly available sequences, and tissue archives to evaluate all potentially sympatric confamilial species and genetically similar extrafamilial taxa. Out of 5276 unique assay-nontarget taxon combinations, we were able to test 4206 (80%). We characterized levels of validation and specificity for each of eight federal geographic regions and provided an online tool with state-level information, as well as detailed assay descriptions in an appendix. Specificity testing benefited from extensive use of <i>eDNAssay</i>—a machine learning classifier trained to predict qPCR cross-amplification—which we found to be 96% accurate in 649 unique tests that underwent paired in silico and in vitro testing. Predictions of assay specificity (the true negative rate) were 98–100% accurate, depending on the classification threshold used. This work provides both an immediate resource for invasive species surveillance and demonstrates an enhanced in silico, geographically subdivided validation framework to aid in future large-scale validation efforts.</p>\",\"PeriodicalId\":52828,\"journal\":{\"name\":\"Environmental DNA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.548\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental DNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/edn3.548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

物种保护需要广泛的出现数据,这促使人们对大规模、全国性的环境 DNA(eDNA)监测战略产生了兴趣。然而,有针对性的 eDNA 检测方法很少经过在广泛地理区域使用的验证。在这里,我们验证了 46 种新的和以前发表的基于探针的 qPCR 检测方法,这些检测方法针对的是美国大陆的入侵物种。我们借鉴了当前的分类学、分布图、公开可用的序列和组织档案,对所有可能同域共生的物种和基因相似的非同域类群进行了评估。在 5276 个独特的检测-非目标类群组合中,我们检测了 4206 个(80%)。我们确定了八个联邦地理区域中每个区域的验证水平和特异性,并提供了一个包含州级信息的在线工具,以及附录中详细的检测说明。特异性测试得益于 eDNAssay 的广泛使用--eDNAssay 是一种经过训练的机器学习分类器,用于预测 qPCR 交叉扩增--我们发现,在 649 项经过硅学和体外配对测试的独特检测中,eDNAssay 的准确率高达 96%。化验特异性(真阴性率)的预测准确率为 98-100%,具体取决于所用的分类阈值。这项工作既为入侵物种监测提供了直接资源,又展示了一个增强型硅学地理细分验证框架,有助于未来的大规模验证工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large-scale validation of 46 invasive species assays using an enhanced in silico framework

Large-scale validation of 46 invasive species assays using an enhanced in silico framework

The need for widespread occurrence data to inform species conservation has prompted interest in large, national-scale environmental DNA (eDNA) monitoring strategies. However, targeted eDNA assays are seldom validated for use across broad geographic areas. Here, we validated 46 new and previously published probe-based qPCR assays targeting invasive species throughout the continental United States. We drew upon current taxonomies, range maps, publicly available sequences, and tissue archives to evaluate all potentially sympatric confamilial species and genetically similar extrafamilial taxa. Out of 5276 unique assay-nontarget taxon combinations, we were able to test 4206 (80%). We characterized levels of validation and specificity for each of eight federal geographic regions and provided an online tool with state-level information, as well as detailed assay descriptions in an appendix. Specificity testing benefited from extensive use of eDNAssay—a machine learning classifier trained to predict qPCR cross-amplification—which we found to be 96% accurate in 649 unique tests that underwent paired in silico and in vitro testing. Predictions of assay specificity (the true negative rate) were 98–100% accurate, depending on the classification threshold used. This work provides both an immediate resource for invasive species surveillance and demonstrates an enhanced in silico, geographically subdivided validation framework to aid in future large-scale validation efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信