{"title":"ResNet50-1D-CNN:基于传输学习的新型轻量级 resNet50-One-dimensional 卷积神经网络,用于改进网络物理系统的入侵检测","authors":"Yakub Kayode Saheed , Oluwadamilare Harazeem Abdulganiyu , Kaloma Usman Majikumna , Musa Mustapha , Abebaw Degu Workneh","doi":"10.1016/j.ijcip.2024.100674","DOIUrl":null,"url":null,"abstract":"<div><p>The cyber-physical system (CPS) plays a crucial role in supporting critical infrastructure like water treatment facilities, gas stations, air conditioning components, and smart grids, which are essential to society. However, these systems are facing a growing susceptibility to a wide range of emerging attacks. Cyber-attacks against CPS have the potential to cause disruptions in the accurate sensing and actuation processes, resulting in significant harm to physical entities and posing concerns for the overall safety of society. Unlike common security measures like firewalls and encryption, which often aren't enough to deal with the unique problems that CPS architectures present, deploying machine learning-based intrusion detection systems (IDS) that are specifically made for CPS has become an important way to make them safer. The application of machine learning algorithms has been suggested as a means of mitigating cyber-attacks on CPS. However, the limited availability of labelled data pertaining to emerging attack techniques poses a significant challenge to the accurate detection of such attacks. In the given scenario, transfer learning emerges as a promising methodology for the detection of cyber-attacks, as it involves the implicit modelling of the system. In this research, we propose a new lightweight transfer learning method via ResNet50-CNN1D for intrusion detection in CPS. The Adaptive Gradient (Adagrad) optimizer was applied in the proposed model to minimize the loss function through the adjustment of network weight. We tested how well the suggested ResNet50-1D-CNN model worked using the UNSW-NB15 dataset and a control system dataset called HAI. The HAI dataset was taken from the testbed and based on a planned physical attack scenario. By calculating the coefficient scores for the top ten (10) features in the HAI and UNSW-NB15 data, it was possible to determine the relevance of a feature. The rationale behind employing transfer learning was to mitigate the complexity associated with the classification of cyber-attacks and runtime. The utilization of transfer learning resulted in notable reductions in both the training and testing times required for the detection of attacks. On the HAI data, the results showed an accuracy of 97.32 %, recall of 98.41 %, F1-score of 96.32 %, and precision of 97.09 %. On the UNSW-NB15 data, the results showed an accuracy of 99.89 %, recall of 99.09 %, F1-score of 98.01 %, and precision of 98.70 %.</p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"45 ","pages":"Article 100674"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ResNet50-1D-CNN: A new lightweight resNet50-One-dimensional convolution neural network transfer learning-based approach for improved intrusion detection in cyber-physical systems\",\"authors\":\"Yakub Kayode Saheed , Oluwadamilare Harazeem Abdulganiyu , Kaloma Usman Majikumna , Musa Mustapha , Abebaw Degu Workneh\",\"doi\":\"10.1016/j.ijcip.2024.100674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The cyber-physical system (CPS) plays a crucial role in supporting critical infrastructure like water treatment facilities, gas stations, air conditioning components, and smart grids, which are essential to society. However, these systems are facing a growing susceptibility to a wide range of emerging attacks. Cyber-attacks against CPS have the potential to cause disruptions in the accurate sensing and actuation processes, resulting in significant harm to physical entities and posing concerns for the overall safety of society. Unlike common security measures like firewalls and encryption, which often aren't enough to deal with the unique problems that CPS architectures present, deploying machine learning-based intrusion detection systems (IDS) that are specifically made for CPS has become an important way to make them safer. The application of machine learning algorithms has been suggested as a means of mitigating cyber-attacks on CPS. However, the limited availability of labelled data pertaining to emerging attack techniques poses a significant challenge to the accurate detection of such attacks. In the given scenario, transfer learning emerges as a promising methodology for the detection of cyber-attacks, as it involves the implicit modelling of the system. In this research, we propose a new lightweight transfer learning method via ResNet50-CNN1D for intrusion detection in CPS. The Adaptive Gradient (Adagrad) optimizer was applied in the proposed model to minimize the loss function through the adjustment of network weight. We tested how well the suggested ResNet50-1D-CNN model worked using the UNSW-NB15 dataset and a control system dataset called HAI. The HAI dataset was taken from the testbed and based on a planned physical attack scenario. By calculating the coefficient scores for the top ten (10) features in the HAI and UNSW-NB15 data, it was possible to determine the relevance of a feature. The rationale behind employing transfer learning was to mitigate the complexity associated with the classification of cyber-attacks and runtime. The utilization of transfer learning resulted in notable reductions in both the training and testing times required for the detection of attacks. On the HAI data, the results showed an accuracy of 97.32 %, recall of 98.41 %, F1-score of 96.32 %, and precision of 97.09 %. On the UNSW-NB15 data, the results showed an accuracy of 99.89 %, recall of 99.09 %, F1-score of 98.01 %, and precision of 98.70 %.</p></div>\",\"PeriodicalId\":49057,\"journal\":{\"name\":\"International Journal of Critical Infrastructure Protection\",\"volume\":\"45 \",\"pages\":\"Article 100674\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Critical Infrastructure Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874548224000155\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548224000155","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
ResNet50-1D-CNN: A new lightweight resNet50-One-dimensional convolution neural network transfer learning-based approach for improved intrusion detection in cyber-physical systems
The cyber-physical system (CPS) plays a crucial role in supporting critical infrastructure like water treatment facilities, gas stations, air conditioning components, and smart grids, which are essential to society. However, these systems are facing a growing susceptibility to a wide range of emerging attacks. Cyber-attacks against CPS have the potential to cause disruptions in the accurate sensing and actuation processes, resulting in significant harm to physical entities and posing concerns for the overall safety of society. Unlike common security measures like firewalls and encryption, which often aren't enough to deal with the unique problems that CPS architectures present, deploying machine learning-based intrusion detection systems (IDS) that are specifically made for CPS has become an important way to make them safer. The application of machine learning algorithms has been suggested as a means of mitigating cyber-attacks on CPS. However, the limited availability of labelled data pertaining to emerging attack techniques poses a significant challenge to the accurate detection of such attacks. In the given scenario, transfer learning emerges as a promising methodology for the detection of cyber-attacks, as it involves the implicit modelling of the system. In this research, we propose a new lightweight transfer learning method via ResNet50-CNN1D for intrusion detection in CPS. The Adaptive Gradient (Adagrad) optimizer was applied in the proposed model to minimize the loss function through the adjustment of network weight. We tested how well the suggested ResNet50-1D-CNN model worked using the UNSW-NB15 dataset and a control system dataset called HAI. The HAI dataset was taken from the testbed and based on a planned physical attack scenario. By calculating the coefficient scores for the top ten (10) features in the HAI and UNSW-NB15 data, it was possible to determine the relevance of a feature. The rationale behind employing transfer learning was to mitigate the complexity associated with the classification of cyber-attacks and runtime. The utilization of transfer learning resulted in notable reductions in both the training and testing times required for the detection of attacks. On the HAI data, the results showed an accuracy of 97.32 %, recall of 98.41 %, F1-score of 96.32 %, and precision of 97.09 %. On the UNSW-NB15 data, the results showed an accuracy of 99.89 %, recall of 99.09 %, F1-score of 98.01 %, and precision of 98.70 %.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.