Kilian Perrelet, Marco Moretti, Andreas Dietzel, Florian Altermatt, Lauren M. Cook
{"title":"为城市生物多样性设计蓝绿基础设施并与之共存","authors":"Kilian Perrelet, Marco Moretti, Andreas Dietzel, Florian Altermatt, Lauren M. Cook","doi":"10.1038/s42949-024-00163-y","DOIUrl":null,"url":null,"abstract":"Blue-green infrastructure (BGI), combining semi-natural and engineered elements, offers multifaceted benefits like stormwater management, water purification, heat mitigation, and habitat provision. However, current BGI designs prioritize engineering goals, overlooking its ecological potential. Here we advocate for integrating engineering and ecological objectives into BGI design to enhance performance and biodiversity. Through an interdisciplinary literature review, we emphasize the importance of species diversity, abundance, and ecological processes, to improve engineering performance and resilience, and lower management costs. We emphasize the importance of interdisciplinary collaboration to navigate trade-offs between engineering and ecological objectives, ultimately enabling us to engineer both for and with biodiversity.","PeriodicalId":74322,"journal":{"name":"npj urban sustainability","volume":" ","pages":"1-11"},"PeriodicalIF":9.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42949-024-00163-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Engineering blue-green infrastructure for and with biodiversity in cities\",\"authors\":\"Kilian Perrelet, Marco Moretti, Andreas Dietzel, Florian Altermatt, Lauren M. Cook\",\"doi\":\"10.1038/s42949-024-00163-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blue-green infrastructure (BGI), combining semi-natural and engineered elements, offers multifaceted benefits like stormwater management, water purification, heat mitigation, and habitat provision. However, current BGI designs prioritize engineering goals, overlooking its ecological potential. Here we advocate for integrating engineering and ecological objectives into BGI design to enhance performance and biodiversity. Through an interdisciplinary literature review, we emphasize the importance of species diversity, abundance, and ecological processes, to improve engineering performance and resilience, and lower management costs. We emphasize the importance of interdisciplinary collaboration to navigate trade-offs between engineering and ecological objectives, ultimately enabling us to engineer both for and with biodiversity.\",\"PeriodicalId\":74322,\"journal\":{\"name\":\"npj urban sustainability\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42949-024-00163-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj urban sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s42949-024-00163-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj urban sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s42949-024-00163-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Engineering blue-green infrastructure for and with biodiversity in cities
Blue-green infrastructure (BGI), combining semi-natural and engineered elements, offers multifaceted benefits like stormwater management, water purification, heat mitigation, and habitat provision. However, current BGI designs prioritize engineering goals, overlooking its ecological potential. Here we advocate for integrating engineering and ecological objectives into BGI design to enhance performance and biodiversity. Through an interdisciplinary literature review, we emphasize the importance of species diversity, abundance, and ecological processes, to improve engineering performance and resilience, and lower management costs. We emphasize the importance of interdisciplinary collaboration to navigate trade-offs between engineering and ecological objectives, ultimately enabling us to engineer both for and with biodiversity.