揭示系统发育多样的微生物扩张素对纤维素微纤维结构的作用

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Majid Haddad Momeni, Aleksi Zitting, Vilma Jäämuru, Rosaliina Turunen, Paavo Penttilä, Garry W. Buchko, Salla Hiltunen, Natalia Maiorova, Anu Koivula, Janak Sapkota, Kaisa Marjamaa, Emma R. Master
{"title":"揭示系统发育多样的微生物扩张素对纤维素微纤维结构的作用","authors":"Majid Haddad Momeni,&nbsp;Aleksi Zitting,&nbsp;Vilma Jäämuru,&nbsp;Rosaliina Turunen,&nbsp;Paavo Penttilä,&nbsp;Garry W. Buchko,&nbsp;Salla Hiltunen,&nbsp;Natalia Maiorova,&nbsp;Anu Koivula,&nbsp;Janak Sapkota,&nbsp;Kaisa Marjamaa,&nbsp;Emma R. Master","doi":"10.1186/s13068-024-02500-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp.</p><h3>Results</h3><p>Five heterogeneously produced EXLXs (<i>Clavibacter michiganensis; Cmi</i>EXLX2, <i>Dickeya aquatica; Daq</i>EXLX1, <i>Xanthomonas sacchari; Xsa</i>EXLX1, <i>Nothophytophthora sp.; Nsp</i>EXLX1 and <i>Phytophthora cactorum; Pca</i>EXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and <i>Cmi</i>EXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20–25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with <i>Cmi</i>EXLX2, <i>Daq</i>EXLX1, or <i>Nsp</i>EXLX1. Correspondingly, combining xylanase with <i>Cmi</i>EXLX2 and <i>Daq</i>EXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the <i>Tr</i>AA9A LPMO from <i>Trichoderma reesei</i> with <i>Cmi</i>EXLX2, <i>Daq</i>EXLX1, and <i>Nsp</i>EXLX1 increased total product yield by over 35%.</p><h3>Conclusion</h3><p>This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02500-w","citationCount":"0","resultStr":"{\"title\":\"Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrils\",\"authors\":\"Majid Haddad Momeni,&nbsp;Aleksi Zitting,&nbsp;Vilma Jäämuru,&nbsp;Rosaliina Turunen,&nbsp;Paavo Penttilä,&nbsp;Garry W. Buchko,&nbsp;Salla Hiltunen,&nbsp;Natalia Maiorova,&nbsp;Anu Koivula,&nbsp;Janak Sapkota,&nbsp;Kaisa Marjamaa,&nbsp;Emma R. Master\",\"doi\":\"10.1186/s13068-024-02500-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp.</p><h3>Results</h3><p>Five heterogeneously produced EXLXs (<i>Clavibacter michiganensis; Cmi</i>EXLX2, <i>Dickeya aquatica; Daq</i>EXLX1, <i>Xanthomonas sacchari; Xsa</i>EXLX1, <i>Nothophytophthora sp.; Nsp</i>EXLX1 and <i>Phytophthora cactorum; Pca</i>EXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and <i>Cmi</i>EXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20–25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with <i>Cmi</i>EXLX2, <i>Daq</i>EXLX1, or <i>Nsp</i>EXLX1. Correspondingly, combining xylanase with <i>Cmi</i>EXLX2 and <i>Daq</i>EXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the <i>Tr</i>AA9A LPMO from <i>Trichoderma reesei</i> with <i>Cmi</i>EXLX2, <i>Daq</i>EXLX1, and <i>Nsp</i>EXLX1 increased total product yield by over 35%.</p><h3>Conclusion</h3><p>This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02500-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02500-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02500-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景微生物扩张素(EXLXs)是一种非水解蛋白,与参与植物细胞壁形成的植物扩张素同源。由于其非溶解性的细胞壁松动特性和分解纤维素结构的潜力,人们对探索微生物扩张素(EXLX)协助纤维素生物质加工以实现更广泛生物技术应用的能力产生了浓厚的兴趣。在此,我们比较了具有不同模块结构和不同系统发育起源的 EXLXs 与纤维素、木糖和几丁质基质的结合能力,对纤维素纤维进行结构修饰的能力,以及促进硬木纸浆酶解的能力。结果五种不同的 EXLX(Clavibacter michiganensis;CmiEXLX2,Dickeya aquatica;DaqEXLX1,Xanthomonas sacchari;XsaEXLX1,Nothophytophthora sp.CmiEXLX2(含有 2 族碳水化合物结合模块)也能很好地与结晶纤维素结合。小角 X 射线散射显示,使用 CmiEXLX2、DaqEXLX1 或 NspEXLX1 处理后,相邻纤维素微纤维之间的纤维间距增加了 20-25%。相应地,将木聚糖酶与 CmiEXLX2 和 DaqEXLX1 结合使用可使硬木纸浆的产品产量提高约 25%,而将毛霉菌的 TrAA9A LPMO 与 CmiEXLX2、DaqEXLX1 和 NspEXLX1 结合使用可使产品总产量提高 35% 以上。结论这种对不同 EXLX 的直接比较表明,它们对纤维素微纤维的纤维间距和作用于纤维表面的碳水化合物活性酶的性能具有一致的影响。这些发现为利用纤维素生物质制造增值材料提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrils

Background

Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp.

Results

Five heterogeneously produced EXLXs (Clavibacter michiganensis; CmiEXLX2, Dickeya aquatica; DaqEXLX1, Xanthomonas sacchari; XsaEXLX1, Nothophytophthora sp.; NspEXLX1 and Phytophthora cactorum; PcaEXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and CmiEXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20–25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with CmiEXLX2, DaqEXLX1, or NspEXLX1. Correspondingly, combining xylanase with CmiEXLX2 and DaqEXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the TrAA9A LPMO from Trichoderma reesei with CmiEXLX2, DaqEXLX1, and NspEXLX1 increased total product yield by over 35%.

Conclusion

This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信