融合弱模型和球模型的新型融合支持向量机,应对海量数据分类挑战

Jonatha Sousa Pimentel , Raydonal Ospina , Anderson Ara
{"title":"融合弱模型和球模型的新型融合支持向量机,应对海量数据分类挑战","authors":"Jonatha Sousa Pimentel ,&nbsp;Raydonal Ospina ,&nbsp;Anderson Ara","doi":"10.1016/j.dajour.2024.100457","DOIUrl":null,"url":null,"abstract":"<div><p>The unprecedented growth in data generation has necessitated the adoption of advanced analytical techniques. Support Vector Machine (SVM) is a powerful machine learning tool that has proven invaluable in classifying observations through optimal hyperplane in higher dimensions. Despite their widespread use, SVM models encounter substantial challenges during the learning phase with massive datasets, necessitating strategic modifications. This paper introduces a novel fusion methodology incorporating weak and sphere support vector machine to address classification challenges with massive datasets. Comparative analyses across diverse simulated and benchmark real datasets underscore the efficacy of the proposed methodologies, exhibiting sustained predictive performance. The remarkable efficiency gain is noteworthy, as the learning phase requires only 10% of the computation time compared to conventional SVM approaches.</p></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"11 ","pages":"Article 100457"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772662224000614/pdfft?md5=cf8e027f895d692040e17e723777b8a5&pid=1-s2.0-S2772662224000614-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel fusion Support Vector Machine integrating weak and sphere models for classification challenges with massive data\",\"authors\":\"Jonatha Sousa Pimentel ,&nbsp;Raydonal Ospina ,&nbsp;Anderson Ara\",\"doi\":\"10.1016/j.dajour.2024.100457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unprecedented growth in data generation has necessitated the adoption of advanced analytical techniques. Support Vector Machine (SVM) is a powerful machine learning tool that has proven invaluable in classifying observations through optimal hyperplane in higher dimensions. Despite their widespread use, SVM models encounter substantial challenges during the learning phase with massive datasets, necessitating strategic modifications. This paper introduces a novel fusion methodology incorporating weak and sphere support vector machine to address classification challenges with massive datasets. Comparative analyses across diverse simulated and benchmark real datasets underscore the efficacy of the proposed methodologies, exhibiting sustained predictive performance. The remarkable efficiency gain is noteworthy, as the learning phase requires only 10% of the computation time compared to conventional SVM approaches.</p></div>\",\"PeriodicalId\":100357,\"journal\":{\"name\":\"Decision Analytics Journal\",\"volume\":\"11 \",\"pages\":\"Article 100457\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772662224000614/pdfft?md5=cf8e027f895d692040e17e723777b8a5&pid=1-s2.0-S2772662224000614-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Analytics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772662224000614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662224000614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据生成量的空前增长要求采用先进的分析技术。支持向量机(SVM)是一种功能强大的机器学习工具,在通过高维度的最优超平面对观察结果进行分类方面被证明是非常有价值的。尽管 SVM 模型得到了广泛应用,但在海量数据集的学习阶段却遇到了巨大挑战,因此有必要对其进行战略性修改。本文介绍了一种结合弱支持向量机和球形支持向量机的新型融合方法,以应对海量数据集带来的分类挑战。对各种模拟数据集和基准真实数据集的对比分析凸显了所提方法的功效,并展示了持续的预测性能。与传统的 SVM 方法相比,学习阶段只需要 10% 的计算时间,因此效率的显著提高是值得注意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel fusion Support Vector Machine integrating weak and sphere models for classification challenges with massive data

The unprecedented growth in data generation has necessitated the adoption of advanced analytical techniques. Support Vector Machine (SVM) is a powerful machine learning tool that has proven invaluable in classifying observations through optimal hyperplane in higher dimensions. Despite their widespread use, SVM models encounter substantial challenges during the learning phase with massive datasets, necessitating strategic modifications. This paper introduces a novel fusion methodology incorporating weak and sphere support vector machine to address classification challenges with massive datasets. Comparative analyses across diverse simulated and benchmark real datasets underscore the efficacy of the proposed methodologies, exhibiting sustained predictive performance. The remarkable efficiency gain is noteworthy, as the learning phase requires only 10% of the computation time compared to conventional SVM approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信