用于稳定全固态锂金属电池的氢化物-氧化物复合电解质中的原位界面反应

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Shunqin Zeng, Meinan Zhao, Chen Xie, Jianhui Li, Xiaoli Ding, Liqing He, Yongtao Li, Qingan Zhang and Hai-Wen Li
{"title":"用于稳定全固态锂金属电池的氢化物-氧化物复合电解质中的原位界面反应","authors":"Shunqin Zeng, Meinan Zhao, Chen Xie, Jianhui Li, Xiaoli Ding, Liqing He, Yongtao Li, Qingan Zhang and Hai-Wen Li","doi":"10.1039/D4QI00491D","DOIUrl":null,"url":null,"abstract":"<p >Developing composite solid electrolytes (CSEs) represents a promising avenue for advancing commercial viability of all-solid-state batteries because none of the single electrolytes can meet the application requirements. However, the correlation of interfacial reconstruction among more than two composite solid electrolytes with property enhancements still remains unclear. In this study, lithium-based hydride-oxide solid electrolytes are chosen as a model to explore <em>in situ</em> interfacial reactions between these composites, with the goal of innovating design of electrolytes for all-solid-state batteries. Our research reveals the formation of dual core–shell-structured electrolytes with LiBO<small><sub>2</sub></small> as the intermediate layer and LiBH<small><sub>4</sub></small> as the outer layer embedded with Li<small><sub><em>x</em></sub></small>M intermediates, resulting in the <em>in situ</em> reactions of LiBH<small><sub>4</sub></small> and Li<small><sub><em>x</em></sub></small>MO<small><sub><em>y</em></sub></small> (M = N, P, S) composites. These composites exhibit continuous conductive networks and demonstrate a high Li<small><sup>+</sup></small> conductivity of ∼1.9 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small> at 75 °C. This impressive conductivity enables stable cycling of Li–Li symmetric cells for 650 h. Moreover, the critical current density can reach about 2.3 mA cm<small><sup>−2</sup></small>, and the electrochemical window extends from −0.5 to 6 V. Notably, the reversible specific capacity attains 225.1 mA h g<small><sup>−1</sup></small> for Li‖TiS<small><sub>2</sub></small> batteries with an initial coulombic efficiency of 95.4%. This work provides valuable insights into the design and performance of composite solid electrolytes, offering a promising approach for the development of high-performance all-solid-state batteries.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 11","pages":" 3323-3333"},"PeriodicalIF":6.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ interfacial reactions in hydride–oxide composite electrolytes for stable all-solid-state Li–metal batteries†\",\"authors\":\"Shunqin Zeng, Meinan Zhao, Chen Xie, Jianhui Li, Xiaoli Ding, Liqing He, Yongtao Li, Qingan Zhang and Hai-Wen Li\",\"doi\":\"10.1039/D4QI00491D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing composite solid electrolytes (CSEs) represents a promising avenue for advancing commercial viability of all-solid-state batteries because none of the single electrolytes can meet the application requirements. However, the correlation of interfacial reconstruction among more than two composite solid electrolytes with property enhancements still remains unclear. In this study, lithium-based hydride-oxide solid electrolytes are chosen as a model to explore <em>in situ</em> interfacial reactions between these composites, with the goal of innovating design of electrolytes for all-solid-state batteries. Our research reveals the formation of dual core–shell-structured electrolytes with LiBO<small><sub>2</sub></small> as the intermediate layer and LiBH<small><sub>4</sub></small> as the outer layer embedded with Li<small><sub><em>x</em></sub></small>M intermediates, resulting in the <em>in situ</em> reactions of LiBH<small><sub>4</sub></small> and Li<small><sub><em>x</em></sub></small>MO<small><sub><em>y</em></sub></small> (M = N, P, S) composites. These composites exhibit continuous conductive networks and demonstrate a high Li<small><sup>+</sup></small> conductivity of ∼1.9 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small> at 75 °C. This impressive conductivity enables stable cycling of Li–Li symmetric cells for 650 h. Moreover, the critical current density can reach about 2.3 mA cm<small><sup>−2</sup></small>, and the electrochemical window extends from −0.5 to 6 V. Notably, the reversible specific capacity attains 225.1 mA h g<small><sup>−1</sup></small> for Li‖TiS<small><sub>2</sub></small> batteries with an initial coulombic efficiency of 95.4%. This work provides valuable insights into the design and performance of composite solid electrolytes, offering a promising approach for the development of high-performance all-solid-state batteries.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 11\",\"pages\":\" 3323-3333\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi00491d\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi00491d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

开发复合固体电解质(CSE)是提高全固态电池商业可行性的一条大有可为的途径。然而,仍然需要研究两种以上复合固体电解质之间的界面反应。本研究选择锂基氢化物-氧化物固体电解质作为模型,探索这些复合材料之间的原位界面反应,旨在创新全固态电池的电解质设计。研究揭示了以 LiBO2 为中间层、LiBH4 为外层并嵌入 LixM 中间体的双核壳结构电解质的形成过程,从而在原位形成了 LiBH4/LixMOy (M = N、P、S)复合材料。这些复合材料呈现出连续的导电网络,并在 75 °C 时显示出 ~1.9× 10-4 S cm-1 的高 Li+ 电导率。此外,临界电流密度达到 2.3 mA cm-2,电化学窗口从 -0.5 V 扩展到 6 V。值得注意的是,"钛酸锂 "电池的可逆比容量达到了 225.1 mAh g-1,初始库仑效率为 95.4%。这项研究为复合固体电解质的设计和性能提供了宝贵的见解,为开发高性能全固态电池提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In situ interfacial reactions in hydride–oxide composite electrolytes for stable all-solid-state Li–metal batteries†

In situ interfacial reactions in hydride–oxide composite electrolytes for stable all-solid-state Li–metal batteries†

Developing composite solid electrolytes (CSEs) represents a promising avenue for advancing commercial viability of all-solid-state batteries because none of the single electrolytes can meet the application requirements. However, the correlation of interfacial reconstruction among more than two composite solid electrolytes with property enhancements still remains unclear. In this study, lithium-based hydride-oxide solid electrolytes are chosen as a model to explore in situ interfacial reactions between these composites, with the goal of innovating design of electrolytes for all-solid-state batteries. Our research reveals the formation of dual core–shell-structured electrolytes with LiBO2 as the intermediate layer and LiBH4 as the outer layer embedded with LixM intermediates, resulting in the in situ reactions of LiBH4 and LixMOy (M = N, P, S) composites. These composites exhibit continuous conductive networks and demonstrate a high Li+ conductivity of ∼1.9 × 10−4 S cm−1 at 75 °C. This impressive conductivity enables stable cycling of Li–Li symmetric cells for 650 h. Moreover, the critical current density can reach about 2.3 mA cm−2, and the electrochemical window extends from −0.5 to 6 V. Notably, the reversible specific capacity attains 225.1 mA h g−1 for Li‖TiS2 batteries with an initial coulombic efficiency of 95.4%. This work provides valuable insights into the design and performance of composite solid electrolytes, offering a promising approach for the development of high-performance all-solid-state batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信