Raphaela G. Bitencourt, Fernando M. P. Anhaia, Julia T. Paula, Antonio J. A. Meirelles, Fernando A. Cabral
{"title":"咖啡工业残渣:连续高压萃取法和传统方法","authors":"Raphaela G. Bitencourt, Fernando M. P. Anhaia, Julia T. Paula, Antonio J. A. Meirelles, Fernando A. Cabral","doi":"10.1007/s43153-024-00457-9","DOIUrl":null,"url":null,"abstract":"<p>Coffee industry generates large amounts of organic waste such as spent coffee grounds (SCG) and green coffee beans press cake (PC). The extraction of oil and phenolic compounds from PC was evaluated by: 1) Soxhlet extraction system using ethanol and hexane as solvent; 2) Extraction in a fixed bed at 400 bar and 60 °C using as solvent supercritical CO<sub>2</sub> (scCO<sub>2</sub>), ethanol or a mixture scCO<sub>2</sub>/ethanol 90:10 w/w; and 3) sequential extraction in a fixed bed at 400 bar and 60 °C using scCO<sub>2</sub> followed by pressurized liquid extraction with ethanol, followed by water. PC showed a residual oil content around 6%, which was extracted with pure scCO<sub>2</sub> and with hexane. Multi-stage extractions provide a statistically equal total extraction yield (<i>p</i> ≤ 0.05) to that obtained in a single step with ethanol, which was around 21%. However, ethanolic extract in one step presented about 96 mg CAE/g extract and the ethanolic and aqueous extracts obtained in the sequential stages showed 159 mg CAE/g and 146 mg CAE/g, respectively. The residue from the mechanical extraction of green coffee oil has an important oil content and the amount of phenolic compounds is greater than that from SCG.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coffee industrial residue: sequential high pressure extraction and conventional methods\",\"authors\":\"Raphaela G. Bitencourt, Fernando M. P. Anhaia, Julia T. Paula, Antonio J. A. Meirelles, Fernando A. Cabral\",\"doi\":\"10.1007/s43153-024-00457-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coffee industry generates large amounts of organic waste such as spent coffee grounds (SCG) and green coffee beans press cake (PC). The extraction of oil and phenolic compounds from PC was evaluated by: 1) Soxhlet extraction system using ethanol and hexane as solvent; 2) Extraction in a fixed bed at 400 bar and 60 °C using as solvent supercritical CO<sub>2</sub> (scCO<sub>2</sub>), ethanol or a mixture scCO<sub>2</sub>/ethanol 90:10 w/w; and 3) sequential extraction in a fixed bed at 400 bar and 60 °C using scCO<sub>2</sub> followed by pressurized liquid extraction with ethanol, followed by water. PC showed a residual oil content around 6%, which was extracted with pure scCO<sub>2</sub> and with hexane. Multi-stage extractions provide a statistically equal total extraction yield (<i>p</i> ≤ 0.05) to that obtained in a single step with ethanol, which was around 21%. However, ethanolic extract in one step presented about 96 mg CAE/g extract and the ethanolic and aqueous extracts obtained in the sequential stages showed 159 mg CAE/g and 146 mg CAE/g, respectively. The residue from the mechanical extraction of green coffee oil has an important oil content and the amount of phenolic compounds is greater than that from SCG.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43153-024-00457-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00457-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Coffee industrial residue: sequential high pressure extraction and conventional methods
Coffee industry generates large amounts of organic waste such as spent coffee grounds (SCG) and green coffee beans press cake (PC). The extraction of oil and phenolic compounds from PC was evaluated by: 1) Soxhlet extraction system using ethanol and hexane as solvent; 2) Extraction in a fixed bed at 400 bar and 60 °C using as solvent supercritical CO2 (scCO2), ethanol or a mixture scCO2/ethanol 90:10 w/w; and 3) sequential extraction in a fixed bed at 400 bar and 60 °C using scCO2 followed by pressurized liquid extraction with ethanol, followed by water. PC showed a residual oil content around 6%, which was extracted with pure scCO2 and with hexane. Multi-stage extractions provide a statistically equal total extraction yield (p ≤ 0.05) to that obtained in a single step with ethanol, which was around 21%. However, ethanolic extract in one step presented about 96 mg CAE/g extract and the ethanolic and aqueous extracts obtained in the sequential stages showed 159 mg CAE/g and 146 mg CAE/g, respectively. The residue from the mechanical extraction of green coffee oil has an important oil content and the amount of phenolic compounds is greater than that from SCG.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.