{"title":"关于巴洛格、塞梅雷迪和高尔斯定理的说明","authors":"Christian Reiher, Tomasz Schoen","doi":"10.1007/s00493-024-00092-5","DOIUrl":null,"url":null,"abstract":"<p>We prove that every additive set <i>A</i> with energy <span>\\(E(A)\\ge |A|^3/K\\)</span> has a subset <span>\\(A'\\subseteq A\\)</span> of size <span>\\(|A'|\\ge (1-\\varepsilon )K^{-1/2}|A|\\)</span> such that <span>\\(|A'-A'|\\le O_\\varepsilon (K^{4}|A'|)\\)</span>. This is, essentially, the largest structured set one can get in the Balog–Szemerédi–Gowers theorem.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on the Theorem of Balog, Szemerédi, and Gowers\",\"authors\":\"Christian Reiher, Tomasz Schoen\",\"doi\":\"10.1007/s00493-024-00092-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that every additive set <i>A</i> with energy <span>\\\\(E(A)\\\\ge |A|^3/K\\\\)</span> has a subset <span>\\\\(A'\\\\subseteq A\\\\)</span> of size <span>\\\\(|A'|\\\\ge (1-\\\\varepsilon )K^{-1/2}|A|\\\\)</span> such that <span>\\\\(|A'-A'|\\\\le O_\\\\varepsilon (K^{4}|A'|)\\\\)</span>. This is, essentially, the largest structured set one can get in the Balog–Szemerédi–Gowers theorem.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00092-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00092-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Note on the Theorem of Balog, Szemerédi, and Gowers
We prove that every additive set A with energy \(E(A)\ge |A|^3/K\) has a subset \(A'\subseteq A\) of size \(|A'|\ge (1-\varepsilon )K^{-1/2}|A|\) such that \(|A'-A'|\le O_\varepsilon (K^{4}|A'|)\). This is, essentially, the largest structured set one can get in the Balog–Szemerédi–Gowers theorem.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.