关于巴洛格、塞梅雷迪和高尔斯定理的说明

IF 1 2区 数学 Q1 MATHEMATICS
Christian Reiher, Tomasz Schoen
{"title":"关于巴洛格、塞梅雷迪和高尔斯定理的说明","authors":"Christian Reiher, Tomasz Schoen","doi":"10.1007/s00493-024-00092-5","DOIUrl":null,"url":null,"abstract":"<p>We prove that every additive set <i>A</i> with energy <span>\\(E(A)\\ge |A|^3/K\\)</span> has a subset <span>\\(A'\\subseteq A\\)</span> of size <span>\\(|A'|\\ge (1-\\varepsilon )K^{-1/2}|A|\\)</span> such that <span>\\(|A'-A'|\\le O_\\varepsilon (K^{4}|A'|)\\)</span>. This is, essentially, the largest structured set one can get in the Balog–Szemerédi–Gowers theorem.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on the Theorem of Balog, Szemerédi, and Gowers\",\"authors\":\"Christian Reiher, Tomasz Schoen\",\"doi\":\"10.1007/s00493-024-00092-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that every additive set <i>A</i> with energy <span>\\\\(E(A)\\\\ge |A|^3/K\\\\)</span> has a subset <span>\\\\(A'\\\\subseteq A\\\\)</span> of size <span>\\\\(|A'|\\\\ge (1-\\\\varepsilon )K^{-1/2}|A|\\\\)</span> such that <span>\\\\(|A'-A'|\\\\le O_\\\\varepsilon (K^{4}|A'|)\\\\)</span>. This is, essentially, the largest structured set one can get in the Balog–Szemerédi–Gowers theorem.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00092-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00092-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,每个具有能量 \(E(A)\ge |A|^3/K\) 的可加集 A 都有一个大小为 \(|A'|ge (1-\varepsilon )K^{-1/2}|A|\) 的子集 \(A'\subseteq A\) ,使得 \(|A'-A'|\le O_\varepsilon (K^{4}|A'|)\).从本质上讲,这是巴洛格-塞梅雷迪-高尔定理中可以得到的最大结构集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on the Theorem of Balog, Szemerédi, and Gowers

We prove that every additive set A with energy \(E(A)\ge |A|^3/K\) has a subset \(A'\subseteq A\) of size \(|A'|\ge (1-\varepsilon )K^{-1/2}|A|\) such that \(|A'-A'|\le O_\varepsilon (K^{4}|A'|)\). This is, essentially, the largest structured set one can get in the Balog–Szemerédi–Gowers theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信