{"title":"为非耦合共享转向设计具有人机交互功能的方向盘扭矩","authors":"Chaoning Chen, Hongyu Zheng, Changfu Zong, Chuyo Kaku","doi":"10.1177/09544070241246578","DOIUrl":null,"url":null,"abstract":"In the uncoupled shared steering architecture based on the steering-by-wire (SBW) system, direct access to road feel and automation-related information is unavailable to the driver. To address this problem, this paper proposes a steering wheel torque feedback model that considers human-machine interaction information. First, the model predictive control (MPC) is adopted in lateral vehicle control by automation. Then a fuzzy control-based control authority allocation model is applied to assign the control authority weight between the human driver and automation according to the value of the Path Lateral Hazard (PLH) Factor and the Driver’s Intent Evaluation (DIE) Factor. These two factors reflect the probability of lateral vehicle collision and the intensity of the driver’s driving intention, respectively. Next, the road feel feedback torque and the human-machine interface (HMI) feedback torque is incorporated in the steering wheel feedback torque model to enhance the driver’s experience in SBW vehicles and trust in the automation. The HMI feedback torque is designed to provide human drivers with information on control authority weight variation and desired angle deviation between the human driver and automation. Simulation and experiment results suggest that the proposed uncouple shared control method can accelerate driver acceptance of automation and provide the driver with a more intuitive steering experience.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of steering wheel torque with human-machine interaction for uncoupled shared steering\",\"authors\":\"Chaoning Chen, Hongyu Zheng, Changfu Zong, Chuyo Kaku\",\"doi\":\"10.1177/09544070241246578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the uncoupled shared steering architecture based on the steering-by-wire (SBW) system, direct access to road feel and automation-related information is unavailable to the driver. To address this problem, this paper proposes a steering wheel torque feedback model that considers human-machine interaction information. First, the model predictive control (MPC) is adopted in lateral vehicle control by automation. Then a fuzzy control-based control authority allocation model is applied to assign the control authority weight between the human driver and automation according to the value of the Path Lateral Hazard (PLH) Factor and the Driver’s Intent Evaluation (DIE) Factor. These two factors reflect the probability of lateral vehicle collision and the intensity of the driver’s driving intention, respectively. Next, the road feel feedback torque and the human-machine interface (HMI) feedback torque is incorporated in the steering wheel feedback torque model to enhance the driver’s experience in SBW vehicles and trust in the automation. The HMI feedback torque is designed to provide human drivers with information on control authority weight variation and desired angle deviation between the human driver and automation. Simulation and experiment results suggest that the proposed uncouple shared control method can accelerate driver acceptance of automation and provide the driver with a more intuitive steering experience.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241246578\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241246578","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of steering wheel torque with human-machine interaction for uncoupled shared steering
In the uncoupled shared steering architecture based on the steering-by-wire (SBW) system, direct access to road feel and automation-related information is unavailable to the driver. To address this problem, this paper proposes a steering wheel torque feedback model that considers human-machine interaction information. First, the model predictive control (MPC) is adopted in lateral vehicle control by automation. Then a fuzzy control-based control authority allocation model is applied to assign the control authority weight between the human driver and automation according to the value of the Path Lateral Hazard (PLH) Factor and the Driver’s Intent Evaluation (DIE) Factor. These two factors reflect the probability of lateral vehicle collision and the intensity of the driver’s driving intention, respectively. Next, the road feel feedback torque and the human-machine interface (HMI) feedback torque is incorporated in the steering wheel feedback torque model to enhance the driver’s experience in SBW vehicles and trust in the automation. The HMI feedback torque is designed to provide human drivers with information on control authority weight variation and desired angle deviation between the human driver and automation. Simulation and experiment results suggest that the proposed uncouple shared control method can accelerate driver acceptance of automation and provide the driver with a more intuitive steering experience.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.