Yi Liu , Mingwei Jia , Danya Xu , Tao Yang , Yuan Yao
{"title":"用于化学过程的物理引导图学习软传感器","authors":"Yi Liu , Mingwei Jia , Danya Xu , Tao Yang , Yuan Yao","doi":"10.1016/j.chemolab.2024.105131","DOIUrl":null,"url":null,"abstract":"<div><p>The surge in data-driven soft sensors for industrial processes is evident. However, most of them suffer from the limitation of being black-box models and this will hamper their widespread use. In response to this challenge, this study proposes a physics-guided graph-learning soft sensor that integrates a physical understanding of industrial processes by incorporating graph-based concepts with process physics. The soft sensor first constructs physical information based on causal relationships between variables using the conditional Granger causality test. Subsequently, it autonomously learns the unique sample information of each observation while employing a regularization loss to ensure the sparsity of the learned information. The model employs a two-stream structure for spatiotemporal encoding of both the physical and sample information. The modeling and prediction results on a penicillin fermentation process indicate that, using the proposed method, the knowledge gained from the data aligns with existing prior knowledge. This approach shows promise in filling the gap between data-driven and physics-based modeling in chemical processes.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"249 ","pages":"Article 105131"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-guided graph learning soft sensor for chemical processes\",\"authors\":\"Yi Liu , Mingwei Jia , Danya Xu , Tao Yang , Yuan Yao\",\"doi\":\"10.1016/j.chemolab.2024.105131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The surge in data-driven soft sensors for industrial processes is evident. However, most of them suffer from the limitation of being black-box models and this will hamper their widespread use. In response to this challenge, this study proposes a physics-guided graph-learning soft sensor that integrates a physical understanding of industrial processes by incorporating graph-based concepts with process physics. The soft sensor first constructs physical information based on causal relationships between variables using the conditional Granger causality test. Subsequently, it autonomously learns the unique sample information of each observation while employing a regularization loss to ensure the sparsity of the learned information. The model employs a two-stream structure for spatiotemporal encoding of both the physical and sample information. The modeling and prediction results on a penicillin fermentation process indicate that, using the proposed method, the knowledge gained from the data aligns with existing prior knowledge. This approach shows promise in filling the gap between data-driven and physics-based modeling in chemical processes.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"249 \",\"pages\":\"Article 105131\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924000716\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924000716","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Physics-guided graph learning soft sensor for chemical processes
The surge in data-driven soft sensors for industrial processes is evident. However, most of them suffer from the limitation of being black-box models and this will hamper their widespread use. In response to this challenge, this study proposes a physics-guided graph-learning soft sensor that integrates a physical understanding of industrial processes by incorporating graph-based concepts with process physics. The soft sensor first constructs physical information based on causal relationships between variables using the conditional Granger causality test. Subsequently, it autonomously learns the unique sample information of each observation while employing a regularization loss to ensure the sparsity of the learned information. The model employs a two-stream structure for spatiotemporal encoding of both the physical and sample information. The modeling and prediction results on a penicillin fermentation process indicate that, using the proposed method, the knowledge gained from the data aligns with existing prior knowledge. This approach shows promise in filling the gap between data-driven and physics-based modeling in chemical processes.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.