基于自适应扩展卷积的 A* 算法,用于无人机路径规划

IF 2.3 4区 计算机科学 Q3 ROBOTICS
Yu Xu, Yang Li, Yubo Tai, Xiaohan Lu, Yaodong Jia, Yifan Wang
{"title":"基于自适应扩展卷积的 A* 算法,用于无人机路径规划","authors":"Yu Xu, Yang Li, Yubo Tai, Xiaohan Lu, Yaodong Jia, Yifan Wang","doi":"10.1007/s11370-024-00536-3","DOIUrl":null,"url":null,"abstract":"<p>Aiming at the shortcomings of traditional A* algorithm in 3D global path planning such as inefficiency and large computation, an A* optimization algorithm based on adaptive expansion convolution is proposed to realize UAV path planning. First, based on the idea of expansion convolution, the traditional A* algorithm is optimized to improve the search efficiency by improving the search step length and reducing the number of nodes needed to select the extended nodes in path planning; adding a weight factor to the cost function to select the appropriate weight of the cost function by keeping the principle of optimal path length while accelerating the planning speed to improve the planning speed of the algorithm; finally, using path pruning to further optimize the paths and reduce the problems of path redundancy. The simulation analysis results show that compared with the traditional A* algorithm, the improved algorithm in this paper reduces the number of extended nodes and shortens the planning time.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"98 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A* algorithm based on adaptive expansion convolution for unmanned aerial vehicle path planning\",\"authors\":\"Yu Xu, Yang Li, Yubo Tai, Xiaohan Lu, Yaodong Jia, Yifan Wang\",\"doi\":\"10.1007/s11370-024-00536-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aiming at the shortcomings of traditional A* algorithm in 3D global path planning such as inefficiency and large computation, an A* optimization algorithm based on adaptive expansion convolution is proposed to realize UAV path planning. First, based on the idea of expansion convolution, the traditional A* algorithm is optimized to improve the search efficiency by improving the search step length and reducing the number of nodes needed to select the extended nodes in path planning; adding a weight factor to the cost function to select the appropriate weight of the cost function by keeping the principle of optimal path length while accelerating the planning speed to improve the planning speed of the algorithm; finally, using path pruning to further optimize the paths and reduce the problems of path redundancy. The simulation analysis results show that compared with the traditional A* algorithm, the improved algorithm in this paper reduces the number of extended nodes and shortens the planning time.</p>\",\"PeriodicalId\":48813,\"journal\":{\"name\":\"Intelligent Service Robotics\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Service Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11370-024-00536-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-024-00536-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

针对传统A*算法在三维全局路径规划中存在的效率低、计算量大等缺点,提出了一种基于自适应扩展卷积的A*优化算法来实现无人机路径规划。首先,基于扩展卷积的思想,对传统的A*算法进行优化,通过提高搜索步长,减少路径规划中选择扩展节点所需的节点数,提高搜索效率;在保持最优路径长度原则的前提下,在代价函数中加入权重因子,选择合适的代价函数权重,同时加快规划速度,提高算法的规划速度;最后,利用路径修剪进一步优化路径,减少路径冗余问题。仿真分析结果表明,与传统的 A* 算法相比,本文的改进算法减少了扩展节点的数量,缩短了规划时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A* algorithm based on adaptive expansion convolution for unmanned aerial vehicle path planning

A* algorithm based on adaptive expansion convolution for unmanned aerial vehicle path planning

Aiming at the shortcomings of traditional A* algorithm in 3D global path planning such as inefficiency and large computation, an A* optimization algorithm based on adaptive expansion convolution is proposed to realize UAV path planning. First, based on the idea of expansion convolution, the traditional A* algorithm is optimized to improve the search efficiency by improving the search step length and reducing the number of nodes needed to select the extended nodes in path planning; adding a weight factor to the cost function to select the appropriate weight of the cost function by keeping the principle of optimal path length while accelerating the planning speed to improve the planning speed of the algorithm; finally, using path pruning to further optimize the paths and reduce the problems of path redundancy. The simulation analysis results show that compared with the traditional A* algorithm, the improved algorithm in this paper reduces the number of extended nodes and shortens the planning time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
4.00%
发文量
46
期刊介绍: The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信