{"title":"miR-451a 被选择性地分类到外泌体中,并通过 CAB39 促进食管鳞状细胞癌的进展","authors":"Lu Wang, Huijuan Liu, Qinglu Wu, Yiqian Liu, Zhenpeng Yan, Guohui Chen, Yao Shang, Songrui Xu, Qichao Zhou, Ting Yan, Xiaolong Cheng","doi":"10.1038/s41417-024-00774-8","DOIUrl":null,"url":null,"abstract":"Exosomes are emerging mediators of cell-cell communication, which are secreted from cells and may be delivered into recipient cells in cell biological processes. Here, we examined microRNA (miRNA) expression in esophageal squamous cell carcinoma (ESCC) cells. We performed miRNA sequencing in exosomes and cells of KYSE150 and KYSE450 cell lines. Among these differentially expressed miRNAs, 20 of the miRNAs were detected in cells and exosomes. A heat map indicated that the level of miR-451a was higher in exosomes than in ESCC cells. Furthermore, miRNA pull-down assays and combined exosomes proteomic data showed that miR-451a interacts with YWHAE. Over-expression of YWHAE leads to miR-451a accumulation in the exosomes instead of the donor cells. We found that miR-451a was sorted into exosomes. However, the biological function of miR-451a remains unclear in ESCC. Here, Dual-luciferase reporter assay was conducted and it was proved that CAB39 is a target gene of miR-451a. Moreover, CAB39 is related to TGF-β1 from RNA-sequencing data of 155 paired of ESCC tissues and the matched tissues. Western Blot and qPCR revealed that CAB39 and TGF-β1 were positively correlated in ESCC. Over-expression of CAB39 were cocultured with PBMCs from the blood from healthy donors. Flow cytometry assays showed that apoptotic cells were significantly reduced after CAB39 over-expression and significantly increased after treated with TGF-β1 inhibitors. Thus, our data indicate that CAB39 weakens antitumor immunity through TGF-β1 in ESCC. In summary, YWHAE selectively sorted miR-451a into exosomes and it can weaken antitumor immunity promotes tumor progression through CAB39.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 7","pages":"1060-1069"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-451a was selectively sorted into exosomes and promoted the progression of esophageal squamous cell carcinoma through CAB39\",\"authors\":\"Lu Wang, Huijuan Liu, Qinglu Wu, Yiqian Liu, Zhenpeng Yan, Guohui Chen, Yao Shang, Songrui Xu, Qichao Zhou, Ting Yan, Xiaolong Cheng\",\"doi\":\"10.1038/s41417-024-00774-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exosomes are emerging mediators of cell-cell communication, which are secreted from cells and may be delivered into recipient cells in cell biological processes. Here, we examined microRNA (miRNA) expression in esophageal squamous cell carcinoma (ESCC) cells. We performed miRNA sequencing in exosomes and cells of KYSE150 and KYSE450 cell lines. Among these differentially expressed miRNAs, 20 of the miRNAs were detected in cells and exosomes. A heat map indicated that the level of miR-451a was higher in exosomes than in ESCC cells. Furthermore, miRNA pull-down assays and combined exosomes proteomic data showed that miR-451a interacts with YWHAE. Over-expression of YWHAE leads to miR-451a accumulation in the exosomes instead of the donor cells. We found that miR-451a was sorted into exosomes. However, the biological function of miR-451a remains unclear in ESCC. Here, Dual-luciferase reporter assay was conducted and it was proved that CAB39 is a target gene of miR-451a. Moreover, CAB39 is related to TGF-β1 from RNA-sequencing data of 155 paired of ESCC tissues and the matched tissues. Western Blot and qPCR revealed that CAB39 and TGF-β1 were positively correlated in ESCC. Over-expression of CAB39 were cocultured with PBMCs from the blood from healthy donors. Flow cytometry assays showed that apoptotic cells were significantly reduced after CAB39 over-expression and significantly increased after treated with TGF-β1 inhibitors. Thus, our data indicate that CAB39 weakens antitumor immunity through TGF-β1 in ESCC. In summary, YWHAE selectively sorted miR-451a into exosomes and it can weaken antitumor immunity promotes tumor progression through CAB39.\",\"PeriodicalId\":9577,\"journal\":{\"name\":\"Cancer gene therapy\",\"volume\":\"31 7\",\"pages\":\"1060-1069\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41417-024-00774-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-024-00774-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
miR-451a was selectively sorted into exosomes and promoted the progression of esophageal squamous cell carcinoma through CAB39
Exosomes are emerging mediators of cell-cell communication, which are secreted from cells and may be delivered into recipient cells in cell biological processes. Here, we examined microRNA (miRNA) expression in esophageal squamous cell carcinoma (ESCC) cells. We performed miRNA sequencing in exosomes and cells of KYSE150 and KYSE450 cell lines. Among these differentially expressed miRNAs, 20 of the miRNAs were detected in cells and exosomes. A heat map indicated that the level of miR-451a was higher in exosomes than in ESCC cells. Furthermore, miRNA pull-down assays and combined exosomes proteomic data showed that miR-451a interacts with YWHAE. Over-expression of YWHAE leads to miR-451a accumulation in the exosomes instead of the donor cells. We found that miR-451a was sorted into exosomes. However, the biological function of miR-451a remains unclear in ESCC. Here, Dual-luciferase reporter assay was conducted and it was proved that CAB39 is a target gene of miR-451a. Moreover, CAB39 is related to TGF-β1 from RNA-sequencing data of 155 paired of ESCC tissues and the matched tissues. Western Blot and qPCR revealed that CAB39 and TGF-β1 were positively correlated in ESCC. Over-expression of CAB39 were cocultured with PBMCs from the blood from healthy donors. Flow cytometry assays showed that apoptotic cells were significantly reduced after CAB39 over-expression and significantly increased after treated with TGF-β1 inhibitors. Thus, our data indicate that CAB39 weakens antitumor immunity through TGF-β1 in ESCC. In summary, YWHAE selectively sorted miR-451a into exosomes and it can weaken antitumor immunity promotes tumor progression through CAB39.
期刊介绍:
Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair.
Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.