{"title":"通过回归减少随机参数线性系统的结构保持模型阶次","authors":"Xiaolong Wang, Siqing Liu","doi":"10.1615/int.j.uncertaintyquantification.2024048898","DOIUrl":null,"url":null,"abstract":"We investigate model order reduction (MOR) of random parametric linear systems via the regression method. By sampling the random parameters containing in the coefficient matrices of the systems via Latin hypercube method, the iterative rational Krylov algorithm (IRKA) is used to generate sample reduced models corresponding to the sample data. We assemble the resulting reduced models by interpolating the coefficient matrices of reduced sample models with the regression technique, where the generalized polynomial chaos (gPC) are adopted to characterize the random dependence coming from the original systems. Noting the invariance of the transfer function with respect to restricted equivalence transformations, the regression method is conducted based on the controllable canonical form of reduced sample models in such a way to improve the accuracy of reduced models greatly. We also provide a posteriori error bound for the projection reduction method in the stochastic setting. We showcase the efficiency of the proposed approach by two large-scale systems along with random parameters: a synthetic model and a mass-spring-damper system.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-Preserving Model Order Reduction of Random Parametric Linear Systems via Regression\",\"authors\":\"Xiaolong Wang, Siqing Liu\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2024048898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate model order reduction (MOR) of random parametric linear systems via the regression method. By sampling the random parameters containing in the coefficient matrices of the systems via Latin hypercube method, the iterative rational Krylov algorithm (IRKA) is used to generate sample reduced models corresponding to the sample data. We assemble the resulting reduced models by interpolating the coefficient matrices of reduced sample models with the regression technique, where the generalized polynomial chaos (gPC) are adopted to characterize the random dependence coming from the original systems. Noting the invariance of the transfer function with respect to restricted equivalence transformations, the regression method is conducted based on the controllable canonical form of reduced sample models in such a way to improve the accuracy of reduced models greatly. We also provide a posteriori error bound for the projection reduction method in the stochastic setting. We showcase the efficiency of the proposed approach by two large-scale systems along with random parameters: a synthetic model and a mass-spring-damper system.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2024048898\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024048898","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure-Preserving Model Order Reduction of Random Parametric Linear Systems via Regression
We investigate model order reduction (MOR) of random parametric linear systems via the regression method. By sampling the random parameters containing in the coefficient matrices of the systems via Latin hypercube method, the iterative rational Krylov algorithm (IRKA) is used to generate sample reduced models corresponding to the sample data. We assemble the resulting reduced models by interpolating the coefficient matrices of reduced sample models with the regression technique, where the generalized polynomial chaos (gPC) are adopted to characterize the random dependence coming from the original systems. Noting the invariance of the transfer function with respect to restricted equivalence transformations, the regression method is conducted based on the controllable canonical form of reduced sample models in such a way to improve the accuracy of reduced models greatly. We also provide a posteriori error bound for the projection reduction method in the stochastic setting. We showcase the efficiency of the proposed approach by two large-scale systems along with random parameters: a synthetic model and a mass-spring-damper system.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.