基于车辆行程链特征的短期交通流预测

Xiaoqing Wang, Feng Sun, Xiaolong Ma, Fangtong Jiao, Benxing Liu, Pengsheng Zhao
{"title":"基于车辆行程链特征的短期交通流预测","authors":"Xiaoqing Wang, Feng Sun, Xiaolong Ma, Fangtong Jiao, Benxing Liu, Pengsheng Zhao","doi":"10.1080/19427867.2024.2334100","DOIUrl":null,"url":null,"abstract":"Short-term traffic flow prediction can improve the efficiency of transportation operations. Historical data-driven prediction methods have been proved to perform well. However, saturated or oversat...","PeriodicalId":501080,"journal":{"name":"Transportation Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term traffic flow prediction based on vehicle trip chain features\",\"authors\":\"Xiaoqing Wang, Feng Sun, Xiaolong Ma, Fangtong Jiao, Benxing Liu, Pengsheng Zhao\",\"doi\":\"10.1080/19427867.2024.2334100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-term traffic flow prediction can improve the efficiency of transportation operations. Historical data-driven prediction methods have been proved to perform well. However, saturated or oversat...\",\"PeriodicalId\":501080,\"journal\":{\"name\":\"Transportation Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19427867.2024.2334100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19427867.2024.2334100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

短期交通流量预测可以提高交通运营效率。历史数据驱动的预测方法已被证明性能良好。然而,饱和或过饱和的交通流量预测会导致交通堵塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term traffic flow prediction based on vehicle trip chain features
Short-term traffic flow prediction can improve the efficiency of transportation operations. Historical data-driven prediction methods have been proved to perform well. However, saturated or oversat...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信