齐格勒 Canonical Multiderivations 的归纳自由性

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Torsten Hoge, Gerhard Röhrle
{"title":"齐格勒 Canonical Multiderivations 的归纳自由性","authors":"Torsten Hoge, Gerhard Röhrle","doi":"10.1007/s00454-024-00644-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({{\\mathscr {A}}}\\)</span> be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction <span>\\({{\\mathscr {A}}}''\\)</span> of <span>\\({{\\mathscr {A}}}\\)</span> to any hyperplane endowed with the natural multiplicity <span>\\(\\kappa \\)</span> is then a free multiarrangement <span>\\(({{\\mathscr {A}}}'',\\kappa )\\)</span>. The aim of this paper is to prove an analogue of Ziegler’s theorem for the stronger notion of inductive freeness: if <span>\\({{\\mathscr {A}}}\\)</span> is inductively free, then so is the multiarrangement <span>\\(({{\\mathscr {A}}}'',\\kappa )\\)</span>. In a related result we derive that if a deletion <span>\\({{\\mathscr {A}}}'\\)</span> of <span>\\({{\\mathscr {A}}}\\)</span> is free and the corresponding restriction <span>\\({{\\mathscr {A}}}''\\)</span> is inductively free, then so is <span>\\(({{\\mathscr {A}}}'',\\kappa )\\)</span>—irrespective of the freeness of <span>\\({{\\mathscr {A}}}\\)</span>. In addition, we show counterparts of the latter kind for additive and recursive freeness.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inductive Freeness of Ziegler’s Canonical Multiderivations\",\"authors\":\"Torsten Hoge, Gerhard Röhrle\",\"doi\":\"10.1007/s00454-024-00644-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({{\\\\mathscr {A}}}\\\\)</span> be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction <span>\\\\({{\\\\mathscr {A}}}''\\\\)</span> of <span>\\\\({{\\\\mathscr {A}}}\\\\)</span> to any hyperplane endowed with the natural multiplicity <span>\\\\(\\\\kappa \\\\)</span> is then a free multiarrangement <span>\\\\(({{\\\\mathscr {A}}}'',\\\\kappa )\\\\)</span>. The aim of this paper is to prove an analogue of Ziegler’s theorem for the stronger notion of inductive freeness: if <span>\\\\({{\\\\mathscr {A}}}\\\\)</span> is inductively free, then so is the multiarrangement <span>\\\\(({{\\\\mathscr {A}}}'',\\\\kappa )\\\\)</span>. In a related result we derive that if a deletion <span>\\\\({{\\\\mathscr {A}}}'\\\\)</span> of <span>\\\\({{\\\\mathscr {A}}}\\\\)</span> is free and the corresponding restriction <span>\\\\({{\\\\mathscr {A}}}''\\\\)</span> is inductively free, then so is <span>\\\\(({{\\\\mathscr {A}}}'',\\\\kappa )\\\\)</span>—irrespective of the freeness of <span>\\\\({{\\\\mathscr {A}}}\\\\)</span>. In addition, we show counterparts of the latter kind for additive and recursive freeness.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00644-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00644-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

让 \({{mathscr {A}}}\) 是一个自由超平面排列。1989 年,齐格勒(Ziegler)证明了 \({{mathscr {A}}'''\) 的限制 \({{mathscr {A}}'''\) 到任何具有自然多重性 \(\kappa \)的超平面都是一个自由多重排列 \(({{mathscr {A}}'',\kappa )\) 。)本文的目的是为更强的归纳自由概念证明齐格勒定理:如果 \({{\mathscr {A}}\) 是归纳自由的,那么多重排列 \(({{\mathscr {A}}'',\kappa )\) 也是自由的。)在一个相关的结果中,我们推导出如果\({{mathscr {A}}) 的删除\({{mathscr {A}}''\) 是自由的,并且相应的限制\({{mathscr {A}}''\) 是归纳自由的、那么 \(({{mathscr {A}}'',\kappa )\) 也是自由的--与 \({{mathscr {A}}) 的自由性无关。)此外,我们还展示了后一种加法自由性和递归自由性的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inductive Freeness of Ziegler’s Canonical Multiderivations

Let \({{\mathscr {A}}}\) be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction \({{\mathscr {A}}}''\) of \({{\mathscr {A}}}\) to any hyperplane endowed with the natural multiplicity \(\kappa \) is then a free multiarrangement \(({{\mathscr {A}}}'',\kappa )\). The aim of this paper is to prove an analogue of Ziegler’s theorem for the stronger notion of inductive freeness: if \({{\mathscr {A}}}\) is inductively free, then so is the multiarrangement \(({{\mathscr {A}}}'',\kappa )\). In a related result we derive that if a deletion \({{\mathscr {A}}}'\) of \({{\mathscr {A}}}\) is free and the corresponding restriction \({{\mathscr {A}}}''\) is inductively free, then so is \(({{\mathscr {A}}}'',\kappa )\)—irrespective of the freeness of \({{\mathscr {A}}}\). In addition, we show counterparts of the latter kind for additive and recursive freeness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信