齐格勒 Canonical Multiderivations 的归纳自由性

Pub Date : 2024-04-21 DOI:10.1007/s00454-024-00644-y
Torsten Hoge, Gerhard Röhrle
{"title":"齐格勒 Canonical Multiderivations 的归纳自由性","authors":"Torsten Hoge, Gerhard Röhrle","doi":"10.1007/s00454-024-00644-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({{\\mathscr {A}}}\\)</span> be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction <span>\\({{\\mathscr {A}}}''\\)</span> of <span>\\({{\\mathscr {A}}}\\)</span> to any hyperplane endowed with the natural multiplicity <span>\\(\\kappa \\)</span> is then a free multiarrangement <span>\\(({{\\mathscr {A}}}'',\\kappa )\\)</span>. The aim of this paper is to prove an analogue of Ziegler’s theorem for the stronger notion of inductive freeness: if <span>\\({{\\mathscr {A}}}\\)</span> is inductively free, then so is the multiarrangement <span>\\(({{\\mathscr {A}}}'',\\kappa )\\)</span>. In a related result we derive that if a deletion <span>\\({{\\mathscr {A}}}'\\)</span> of <span>\\({{\\mathscr {A}}}\\)</span> is free and the corresponding restriction <span>\\({{\\mathscr {A}}}''\\)</span> is inductively free, then so is <span>\\(({{\\mathscr {A}}}'',\\kappa )\\)</span>—irrespective of the freeness of <span>\\({{\\mathscr {A}}}\\)</span>. In addition, we show counterparts of the latter kind for additive and recursive freeness.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inductive Freeness of Ziegler’s Canonical Multiderivations\",\"authors\":\"Torsten Hoge, Gerhard Röhrle\",\"doi\":\"10.1007/s00454-024-00644-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({{\\\\mathscr {A}}}\\\\)</span> be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction <span>\\\\({{\\\\mathscr {A}}}''\\\\)</span> of <span>\\\\({{\\\\mathscr {A}}}\\\\)</span> to any hyperplane endowed with the natural multiplicity <span>\\\\(\\\\kappa \\\\)</span> is then a free multiarrangement <span>\\\\(({{\\\\mathscr {A}}}'',\\\\kappa )\\\\)</span>. The aim of this paper is to prove an analogue of Ziegler’s theorem for the stronger notion of inductive freeness: if <span>\\\\({{\\\\mathscr {A}}}\\\\)</span> is inductively free, then so is the multiarrangement <span>\\\\(({{\\\\mathscr {A}}}'',\\\\kappa )\\\\)</span>. In a related result we derive that if a deletion <span>\\\\({{\\\\mathscr {A}}}'\\\\)</span> of <span>\\\\({{\\\\mathscr {A}}}\\\\)</span> is free and the corresponding restriction <span>\\\\({{\\\\mathscr {A}}}''\\\\)</span> is inductively free, then so is <span>\\\\(({{\\\\mathscr {A}}}'',\\\\kappa )\\\\)</span>—irrespective of the freeness of <span>\\\\({{\\\\mathscr {A}}}\\\\)</span>. In addition, we show counterparts of the latter kind for additive and recursive freeness.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00644-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00644-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \({{mathscr {A}}}\) 是一个自由超平面排列。1989 年,齐格勒(Ziegler)证明了 \({{mathscr {A}}'''\) 的限制 \({{mathscr {A}}'''\) 到任何具有自然多重性 \(\kappa \)的超平面都是一个自由多重排列 \(({{mathscr {A}}'',\kappa )\) 。)本文的目的是为更强的归纳自由概念证明齐格勒定理:如果 \({{\mathscr {A}}\) 是归纳自由的,那么多重排列 \(({{\mathscr {A}}'',\kappa )\) 也是自由的。)在一个相关的结果中,我们推导出如果\({{mathscr {A}}) 的删除\({{mathscr {A}}''\) 是自由的,并且相应的限制\({{mathscr {A}}''\) 是归纳自由的、那么 \(({{mathscr {A}}'',\kappa )\) 也是自由的--与 \({{mathscr {A}}) 的自由性无关。)此外,我们还展示了后一种加法自由性和递归自由性的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Inductive Freeness of Ziegler’s Canonical Multiderivations

Let \({{\mathscr {A}}}\) be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction \({{\mathscr {A}}}''\) of \({{\mathscr {A}}}\) to any hyperplane endowed with the natural multiplicity \(\kappa \) is then a free multiarrangement \(({{\mathscr {A}}}'',\kappa )\). The aim of this paper is to prove an analogue of Ziegler’s theorem for the stronger notion of inductive freeness: if \({{\mathscr {A}}}\) is inductively free, then so is the multiarrangement \(({{\mathscr {A}}}'',\kappa )\). In a related result we derive that if a deletion \({{\mathscr {A}}}'\) of \({{\mathscr {A}}}\) is free and the corresponding restriction \({{\mathscr {A}}}''\) is inductively free, then so is \(({{\mathscr {A}}}'',\kappa )\)—irrespective of the freeness of \({{\mathscr {A}}}\). In addition, we show counterparts of the latter kind for additive and recursive freeness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信