用于粒子加速器控制的量子模糊推理引擎

Giovanni Acampora;Michele Grossi;Michael Schenk;Roberto Schiattarella
{"title":"用于粒子加速器控制的量子模糊推理引擎","authors":"Giovanni Acampora;Michele Grossi;Michael Schenk;Roberto Schiattarella","doi":"10.1109/TQE.2024.3374251","DOIUrl":null,"url":null,"abstract":"Recently, quantum computing has been proven as an ideal theory for the design of fuzzy inference engines, thanks to its capability to efficiently solve the rule explosion problem. In this scenario, a quantum fuzzy inference engine (QFIE) was proposed as a quantum algorithm able to generate an exponential computational advantage over conventional fuzzy inference engines. However, there are no practical demonstrations that the QFIE can be used to efficiently manage complex systems. This article bridges this gap by using, for the very first time, the QFIE to control critical systems such as those related to particle accelerator facilities at the European Organization for Nuclear Research (CERN). As demonstrated by a series of experiments performed at the T4 target station of the CERN Super Proton Synchrotron fixed-target physics beamline and at the Advanced Proton Driven Plasma Wakefield Acceleration Experiment, the QFIE is able to efficiently control such an environment, paving the way for the use of fuzzy-enabled quantum computers in real-world applications.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10462538","citationCount":"0","resultStr":"{\"title\":\"Quantum Fuzzy Inference Engine for Particle Accelerator Control\",\"authors\":\"Giovanni Acampora;Michele Grossi;Michael Schenk;Roberto Schiattarella\",\"doi\":\"10.1109/TQE.2024.3374251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, quantum computing has been proven as an ideal theory for the design of fuzzy inference engines, thanks to its capability to efficiently solve the rule explosion problem. In this scenario, a quantum fuzzy inference engine (QFIE) was proposed as a quantum algorithm able to generate an exponential computational advantage over conventional fuzzy inference engines. However, there are no practical demonstrations that the QFIE can be used to efficiently manage complex systems. This article bridges this gap by using, for the very first time, the QFIE to control critical systems such as those related to particle accelerator facilities at the European Organization for Nuclear Research (CERN). As demonstrated by a series of experiments performed at the T4 target station of the CERN Super Proton Synchrotron fixed-target physics beamline and at the Advanced Proton Driven Plasma Wakefield Acceleration Experiment, the QFIE is able to efficiently control such an environment, paving the way for the use of fuzzy-enabled quantum computers in real-world applications.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10462538\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10462538/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10462538/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,量子计算因其高效解决规则爆炸问题的能力,被证明是设计模糊推理引擎的理想理论。在这种情况下,量子模糊推理引擎(QFIE)作为一种量子算法被提出来,与传统的模糊推理引擎相比,它能产生指数级的计算优势。然而,量子模糊推理引擎能否用于高效管理复杂系统还没有实际的证明。本文首次使用 QFIE 控制欧洲核子研究中心(CERN)的粒子加速器设施等关键系统,弥补了这一空白。正如在欧洲核子研究中心超级质子同步加速器固定靶物理光束线的T4靶站和先进质子驱动等离子体瓦克菲尔德加速实验中进行的一系列实验所证明的那样,QFIE能够有效地控制这样的环境,为在现实世界中使用支持模糊的量子计算机铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Fuzzy Inference Engine for Particle Accelerator Control
Recently, quantum computing has been proven as an ideal theory for the design of fuzzy inference engines, thanks to its capability to efficiently solve the rule explosion problem. In this scenario, a quantum fuzzy inference engine (QFIE) was proposed as a quantum algorithm able to generate an exponential computational advantage over conventional fuzzy inference engines. However, there are no practical demonstrations that the QFIE can be used to efficiently manage complex systems. This article bridges this gap by using, for the very first time, the QFIE to control critical systems such as those related to particle accelerator facilities at the European Organization for Nuclear Research (CERN). As demonstrated by a series of experiments performed at the T4 target station of the CERN Super Proton Synchrotron fixed-target physics beamline and at the Advanced Proton Driven Plasma Wakefield Acceleration Experiment, the QFIE is able to efficiently control such an environment, paving the way for the use of fuzzy-enabled quantum computers in real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信