用非经典 sinc 法数值求解奇异扰动奇异三阶边界值问题

IF 1.4 Q2 MATHEMATICS, APPLIED
A. Alipanah, K. Mohammadi, R.M. Haji
{"title":"用非经典 sinc 法数值求解奇异扰动奇异三阶边界值问题","authors":"A. Alipanah,&nbsp;K. Mohammadi,&nbsp;R.M. Haji","doi":"10.1016/j.rinam.2024.100459","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we employ a nonclassical sinc-collocation method to compute numerical solutions for singularly perturbed singular third-order boundary value problems prevalent in various scientific and engineering domains. Utilizing the sinc approximation offers a strategic advantage in navigating singularities, thus enabling an efficient computational strategy. Our method streamlines the solution process by converting singular boundary value problems into sets of linear equations, thereby improving computational efficiency. Moreover, its straightforward implementation adds to its robustness. We explore the convergence properties and error estimation of our proposed methods in detail. Finally, we provide two illustrative examples that demonstrate the effectiveness of our approach.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100459"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000293/pdfft?md5=af171e0fc328aead340f15491e241174&pid=1-s2.0-S2590037424000293-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical solution of singularly perturbed singular third order boundary value problems with nonclassical sinc method\",\"authors\":\"A. Alipanah,&nbsp;K. Mohammadi,&nbsp;R.M. Haji\",\"doi\":\"10.1016/j.rinam.2024.100459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we employ a nonclassical sinc-collocation method to compute numerical solutions for singularly perturbed singular third-order boundary value problems prevalent in various scientific and engineering domains. Utilizing the sinc approximation offers a strategic advantage in navigating singularities, thus enabling an efficient computational strategy. Our method streamlines the solution process by converting singular boundary value problems into sets of linear equations, thereby improving computational efficiency. Moreover, its straightforward implementation adds to its robustness. We explore the convergence properties and error estimation of our proposed methods in detail. Finally, we provide two illustrative examples that demonstrate the effectiveness of our approach.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"22 \",\"pages\":\"Article 100459\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000293/pdfft?md5=af171e0fc328aead340f15491e241174&pid=1-s2.0-S2590037424000293-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们采用非经典的 sinc-collocation 方法来计算各种科学和工程领域中普遍存在的奇异扰动奇异三阶边界值问题的数值解。利用 sinc 近似法在克服奇点方面具有战略优势,从而实现了高效的计算策略。我们的方法通过将奇异边界值问题转换为线性方程组,简化了求解过程,从而提高了计算效率。此外,该方法的直接实施也增强了其稳健性。我们详细探讨了所提方法的收敛特性和误差估计。最后,我们提供了两个示例来证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of singularly perturbed singular third order boundary value problems with nonclassical sinc method

In this paper, we employ a nonclassical sinc-collocation method to compute numerical solutions for singularly perturbed singular third-order boundary value problems prevalent in various scientific and engineering domains. Utilizing the sinc approximation offers a strategic advantage in navigating singularities, thus enabling an efficient computational strategy. Our method streamlines the solution process by converting singular boundary value problems into sets of linear equations, thereby improving computational efficiency. Moreover, its straightforward implementation adds to its robustness. We explore the convergence properties and error estimation of our proposed methods in detail. Finally, we provide two illustrative examples that demonstrate the effectiveness of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信