利用粒子图像测速仪研究单面加热的水平矩形通道内流动沸腾时的流体流动情况

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Chinmay Shingote, Farshad Barghi Golezani, Chirag R. Kharangate
{"title":"利用粒子图像测速仪研究单面加热的水平矩形通道内流动沸腾时的流体流动情况","authors":"Chinmay Shingote,&nbsp;Farshad Barghi Golezani,&nbsp;Chirag R. Kharangate","doi":"10.1016/j.expthermflusci.2024.111221","DOIUrl":null,"url":null,"abstract":"<div><p>Subcooled flow boiling is a highly efficient cooling systems for thermal management systems. This study explores the intricate dynamics of subcooled flow boiling within a horizontal channel, investigating the impact of vapor generation on liquid-phase velocity using Particle Image Velocimetry (PIV) and advanced image processing techniques. Four mass flow rates ranging from 5–20 g/s with subcooled inlet conditions are investigated in a rectangular channel with single-sided heating. Three regions of interest along the heated channel are investigated for instantaneous PIV analysis. The PIV system captures detailed velocity profiles, illustrating the impact of varying mass flow rates and heat flux levels on flow behavior. Vapor masking techniques are introduced to enhance the precision of PIV data by mitigating interference from the vapor phase. Results demonstrate the influence of vapor bubbles on flow resistance, revealing non-uniform velocity distributions and turbulence near the liquid–vapor interface. The study emphasizes the critical role of inertia and buoyancy forces in shaping the velocity profiles. Moreover, the investigation sheds light on the effects of flow rates on the interfacial behaviors, hinting at a transition point between 10 and 15 g/s. In summary, this research contributes valuable insights into the nuanced dynamics of flow boiling, laying the foundation for future studies on turbulence, heat transfer, and phase-change phenomena in two-phase thermal management systems.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0894177724000906/pdfft?md5=afed78db583297e4e5497bcf043c93e1&pid=1-s2.0-S0894177724000906-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of fluid flow during flow boiling inside a horizontal rectangular channel with single-sided heating using particle image velocimetry\",\"authors\":\"Chinmay Shingote,&nbsp;Farshad Barghi Golezani,&nbsp;Chirag R. Kharangate\",\"doi\":\"10.1016/j.expthermflusci.2024.111221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Subcooled flow boiling is a highly efficient cooling systems for thermal management systems. This study explores the intricate dynamics of subcooled flow boiling within a horizontal channel, investigating the impact of vapor generation on liquid-phase velocity using Particle Image Velocimetry (PIV) and advanced image processing techniques. Four mass flow rates ranging from 5–20 g/s with subcooled inlet conditions are investigated in a rectangular channel with single-sided heating. Three regions of interest along the heated channel are investigated for instantaneous PIV analysis. The PIV system captures detailed velocity profiles, illustrating the impact of varying mass flow rates and heat flux levels on flow behavior. Vapor masking techniques are introduced to enhance the precision of PIV data by mitigating interference from the vapor phase. Results demonstrate the influence of vapor bubbles on flow resistance, revealing non-uniform velocity distributions and turbulence near the liquid–vapor interface. The study emphasizes the critical role of inertia and buoyancy forces in shaping the velocity profiles. Moreover, the investigation sheds light on the effects of flow rates on the interfacial behaviors, hinting at a transition point between 10 and 15 g/s. In summary, this research contributes valuable insights into the nuanced dynamics of flow boiling, laying the foundation for future studies on turbulence, heat transfer, and phase-change phenomena in two-phase thermal management systems.</p></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0894177724000906/pdfft?md5=afed78db583297e4e5497bcf043c93e1&pid=1-s2.0-S0894177724000906-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724000906\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724000906","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

过冷流沸腾是热管理系统的一种高效冷却系统。本研究利用粒子图像测速仪(PIV)和先进的图像处理技术,探讨了水平通道内过冷流沸腾的复杂动态,研究了蒸汽产生对液相速度的影响。在单侧加热的矩形通道中,研究了过冷入口条件下 5-20 克/秒的四种质量流量。沿加热通道对三个感兴趣的区域进行了研究,以进行瞬时 PIV 分析。PIV 系统捕捉到了详细的速度剖面图,说明了不同质量流量和热通量水平对流动行为的影响。引入了气相掩蔽技术,通过减轻气相干扰来提高 PIV 数据的精度。结果表明了气泡对流动阻力的影响,揭示了液体-蒸汽界面附近不均匀的速度分布和湍流。研究强调了惯性力和浮力在形成速度曲线中的关键作用。此外,研究还揭示了流速对界面行为的影响,暗示了 10 至 15 克/秒之间的过渡点。总之,这项研究为了解流动沸腾的微妙动态提供了宝贵的见解,为今后研究两相热管理系统中的湍流、传热和相变现象奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of fluid flow during flow boiling inside a horizontal rectangular channel with single-sided heating using particle image velocimetry

Subcooled flow boiling is a highly efficient cooling systems for thermal management systems. This study explores the intricate dynamics of subcooled flow boiling within a horizontal channel, investigating the impact of vapor generation on liquid-phase velocity using Particle Image Velocimetry (PIV) and advanced image processing techniques. Four mass flow rates ranging from 5–20 g/s with subcooled inlet conditions are investigated in a rectangular channel with single-sided heating. Three regions of interest along the heated channel are investigated for instantaneous PIV analysis. The PIV system captures detailed velocity profiles, illustrating the impact of varying mass flow rates and heat flux levels on flow behavior. Vapor masking techniques are introduced to enhance the precision of PIV data by mitigating interference from the vapor phase. Results demonstrate the influence of vapor bubbles on flow resistance, revealing non-uniform velocity distributions and turbulence near the liquid–vapor interface. The study emphasizes the critical role of inertia and buoyancy forces in shaping the velocity profiles. Moreover, the investigation sheds light on the effects of flow rates on the interfacial behaviors, hinting at a transition point between 10 and 15 g/s. In summary, this research contributes valuable insights into the nuanced dynamics of flow boiling, laying the foundation for future studies on turbulence, heat transfer, and phase-change phenomena in two-phase thermal management systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信