{"title":"增强投影瓦瑟斯坦距离:带神经表面的多维投影","authors":"Miyu Sugimoto , Ryo Okano , Masaaki Imaizumi","doi":"10.1016/j.jspi.2024.106185","DOIUrl":null,"url":null,"abstract":"<div><p>The Wasserstein distance is a fundamental tool for comparing probability distributions and has found broad applications in various fields, including image generation using generative adversarial networks. Despite its useful properties, the performance of the Wasserstein distance decreases when data is high-dimensional, known as the curse of dimensionality. To mitigate this issue, an extension of the Wasserstein distance has been developed, such as the sliced Wasserstein distance using one-dimensional projection. However, such an extension loses information on the original data, due to the linear projection onto the one-dimensional space. In this paper, we propose novel distances named augmented projection Wasserstein distances (APWDs) to address these issues, which utilize multi-dimensional projection with a nonlinear surface by a neural network. The APWDs employ a two-step procedure; it first maps data onto a nonlinear surface by a neural network, then linearly projects the mapped data into a multidimensional space. We also give an algorithm to select a subspace for the multi-dimensional projection. The APWDs are computationally effective while preserving nonlinear information of data. We theoretically confirm that the APWDs mitigate the curse of dimensionality from data. Our experiments demonstrate the APWDs’ outstanding performance and robustness to noise, particularly in the context of nonlinear high-dimensional data.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106185"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000429/pdfft?md5=d9eef2f8ec0fb76099ca4281dc2a0b63&pid=1-s2.0-S0378375824000429-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Augmented projection Wasserstein distances: Multi-dimensional projection with neural surface\",\"authors\":\"Miyu Sugimoto , Ryo Okano , Masaaki Imaizumi\",\"doi\":\"10.1016/j.jspi.2024.106185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Wasserstein distance is a fundamental tool for comparing probability distributions and has found broad applications in various fields, including image generation using generative adversarial networks. Despite its useful properties, the performance of the Wasserstein distance decreases when data is high-dimensional, known as the curse of dimensionality. To mitigate this issue, an extension of the Wasserstein distance has been developed, such as the sliced Wasserstein distance using one-dimensional projection. However, such an extension loses information on the original data, due to the linear projection onto the one-dimensional space. In this paper, we propose novel distances named augmented projection Wasserstein distances (APWDs) to address these issues, which utilize multi-dimensional projection with a nonlinear surface by a neural network. The APWDs employ a two-step procedure; it first maps data onto a nonlinear surface by a neural network, then linearly projects the mapped data into a multidimensional space. We also give an algorithm to select a subspace for the multi-dimensional projection. The APWDs are computationally effective while preserving nonlinear information of data. We theoretically confirm that the APWDs mitigate the curse of dimensionality from data. Our experiments demonstrate the APWDs’ outstanding performance and robustness to noise, particularly in the context of nonlinear high-dimensional data.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"233 \",\"pages\":\"Article 106185\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000429/pdfft?md5=d9eef2f8ec0fb76099ca4281dc2a0b63&pid=1-s2.0-S0378375824000429-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000429\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000429","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Augmented projection Wasserstein distances: Multi-dimensional projection with neural surface
The Wasserstein distance is a fundamental tool for comparing probability distributions and has found broad applications in various fields, including image generation using generative adversarial networks. Despite its useful properties, the performance of the Wasserstein distance decreases when data is high-dimensional, known as the curse of dimensionality. To mitigate this issue, an extension of the Wasserstein distance has been developed, such as the sliced Wasserstein distance using one-dimensional projection. However, such an extension loses information on the original data, due to the linear projection onto the one-dimensional space. In this paper, we propose novel distances named augmented projection Wasserstein distances (APWDs) to address these issues, which utilize multi-dimensional projection with a nonlinear surface by a neural network. The APWDs employ a two-step procedure; it first maps data onto a nonlinear surface by a neural network, then linearly projects the mapped data into a multidimensional space. We also give an algorithm to select a subspace for the multi-dimensional projection. The APWDs are computationally effective while preserving nonlinear information of data. We theoretically confirm that the APWDs mitigate the curse of dimensionality from data. Our experiments demonstrate the APWDs’ outstanding performance and robustness to noise, particularly in the context of nonlinear high-dimensional data.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.