{"title":"具有垂直缩放功能的分形插值面的盒尺寸","authors":"LAI JIANG","doi":"10.1142/s0218348x24500713","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we first present a simple lemma which allows us to estimate the box dimension of graphs of given functions by the associated oscillation sums and oscillation vectors. Then we define vertical scaling matrices of generalized affine fractal interpolation surfaces (FISs). By using these matrices, we establish relationships between oscillation vectors of different levels, which enables us to obtain the box dimension of generalized affine FISs under certain constraints.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BOX DIMENSION OF FRACTAL INTERPOLATION SURFACES WITH VERTICAL SCALING FUNCTION\",\"authors\":\"LAI JIANG\",\"doi\":\"10.1142/s0218348x24500713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we first present a simple lemma which allows us to estimate the box dimension of graphs of given functions by the associated oscillation sums and oscillation vectors. Then we define vertical scaling matrices of generalized affine fractal interpolation surfaces (FISs). By using these matrices, we establish relationships between oscillation vectors of different levels, which enables us to obtain the box dimension of generalized affine FISs under certain constraints.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BOX DIMENSION OF FRACTAL INTERPOLATION SURFACES WITH VERTICAL SCALING FUNCTION
In this paper, we first present a simple lemma which allows us to estimate the box dimension of graphs of given functions by the associated oscillation sums and oscillation vectors. Then we define vertical scaling matrices of generalized affine fractal interpolation surfaces (FISs). By using these matrices, we establish relationships between oscillation vectors of different levels, which enables us to obtain the box dimension of generalized affine FISs under certain constraints.