具有垂直缩放功能的分形插值面的盒尺寸

Fractals Pub Date : 2024-04-20 DOI:10.1142/s0218348x24500713
LAI JIANG
{"title":"具有垂直缩放功能的分形插值面的盒尺寸","authors":"LAI JIANG","doi":"10.1142/s0218348x24500713","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we first present a simple lemma which allows us to estimate the box dimension of graphs of given functions by the associated oscillation sums and oscillation vectors. Then we define vertical scaling matrices of generalized affine fractal interpolation surfaces (FISs). By using these matrices, we establish relationships between oscillation vectors of different levels, which enables us to obtain the box dimension of generalized affine FISs under certain constraints.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BOX DIMENSION OF FRACTAL INTERPOLATION SURFACES WITH VERTICAL SCALING FUNCTION\",\"authors\":\"LAI JIANG\",\"doi\":\"10.1142/s0218348x24500713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we first present a simple lemma which allows us to estimate the box dimension of graphs of given functions by the associated oscillation sums and oscillation vectors. Then we define vertical scaling matrices of generalized affine fractal interpolation surfaces (FISs). By using these matrices, we establish relationships between oscillation vectors of different levels, which enables us to obtain the box dimension of generalized affine FISs under certain constraints.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先提出了一个简单的 Lemma,它允许我们通过相关的振荡和与振荡向量来估计给定函数图形的盒维度。然后,我们定义了广义仿射分形插值面(FIS)的垂直缩放矩阵。通过使用这些矩阵,我们建立了不同层次振荡向量之间的关系,从而使我们能够在一定的约束条件下获得广义仿射分形插值面的箱体维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BOX DIMENSION OF FRACTAL INTERPOLATION SURFACES WITH VERTICAL SCALING FUNCTION

In this paper, we first present a simple lemma which allows us to estimate the box dimension of graphs of given functions by the associated oscillation sums and oscillation vectors. Then we define vertical scaling matrices of generalized affine fractal interpolation surfaces (FISs). By using these matrices, we establish relationships between oscillation vectors of different levels, which enables us to obtain the box dimension of generalized affine FISs under certain constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信